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a b s t r a c t

We present a non-invasive ambient intelligence framework for the semi-automatic analysis of non-verbal

communication applied to the restorative justice field. We propose the use of computer vision and social

signal processing technologies in real scenarios of Victim–Offender Mediations, applying feature extraction

techniques to multi-modal audio-RGB-depth data. We compute a set of behavioral indicators that define

communicative cues from the fields of psychology and observational methodology. We test our methodology

on data captured in real Victim–Offender Mediation sessions in Catalonia. We define the ground truth based

on expert opinions when annotating the observed social responses. Using different state of the art binary

classification approaches, our system achieves recognition accuracies of 86% when predicting satisfaction,

and 79% when predicting both agreement and receptivity. Applying a regression strategy, we obtain a mean

deviation for the predictions between 0.5 and 0.7 in the range [1–5] for the computed social signals.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Restorative justice is an international social movement for the re-

orm of criminal justice. This approach to justice focuses on the needs

f the victims, who take an active role in the process, while offend-

rs are encouraged to take responsibility for their actions to repair

he harm they have done [43]. One of the common procedures offered

o victims is the possibility of exchanging their impressions with a

ediator, in a program known as the Victim–Offender Mediation

henceforth VOM) program. Given the sensitive nature of the cases,

he process consists initially of a set of individual encounters, where

ach party involved (i.e. victim or offender) attends an interview or

eeting with a mediator to analyze the problem in depth. The deci-

ion is then taken as to whether the victim and the offender might

ngage in a joint encounter. Fig. 1(a) shows an example of a real VOM

cenario.

In the VOM process, the goal is to reach a restitution agreement

y seeking to balance the interests of each of the parties, conditioned

y the events that have occurred and the associated legal proceed-

ngs. This agreement can be reached in one of two ways. First, there

re pre-conditioning factors to a case, given its particular facts, which
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ake mediation feasible or not. Second, high levels of agreement and

xpressed satisfaction between the parties and the mediator are in-

icators of whether the VOM process is likely to end in success or

ailure [41]. The emergence of these indicators depends on a large set

f factors that are not only concerned with the professionalism of the

ediator, but are also related to other factors including the applica-

ility of mediation, the participants’ traits, human relationships, the

rst impressions, among others. Furthermore, if we examine each of

he participants (victim, offender, and mediator), certain characteris-

ics, including their cultural background, education, and social status,

re likely to have a high impact on the success or otherwise of the

rocess [28,29].

Participant roles are clearly defined in these conversational pro-

esses, as they are in similar scenarios, such as job interviews. The

ediator explains the process and listens to the other parties, main-

aining his or her impartiality at all times, whereas the victim and

ffender are more concerned with protecting their own interests and

ay appear quite wrapped up in the problem they face. Indeed, no

tandard guidelines exist for establishing the best course of actions or

dentifying the psychological mechanisms for achieving the desired

ediation goals. There exist, however, a set of body communicative

ues that are present in the conversation and affect the way of how

articipants perceive each other. This non-verbal communication has

een of high interest to intensively analyze the human interaction in

ocial psychology and cognitive sciences [20].

In this context, multi-modal intelligent systems can be used to an-

lyze this information by means of extracting features separately for
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Fig. 1. Visual instances of some situations where behavioral indicators are detected in VOM sessions. Image (a) shows the detection of crossed gazes between the mediator and

the other participant. Images (b) and (c) show a depth image and its segmentation for the person (white point cloud) and the table (red point cloud), respectively, which is used to

detect a situation in which the target subject appears with his or her hands under the table. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article).
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the different data sources, such as those captured from low-cost sen-

sor devices. They can then be combined so as to define and recognize

communicative indicators. In this paper, we present the first state of

the art pattern recognition method to extract multi-modal features

and recognize social signals in VOM processes.

The rest of the paper is organized as follows. Section 2 describes

the related work. Next, Section 3 presents the material acquired and

used in this study. In Section 4, we describe the system modules.

Section 5 outlines the proposal setup and the experimental results.

Finally, Section 6 concludes the paper.

2. Related work

The Restorative Justice approach focuses on the personal needs

of victims. Achieving success in the VOM sessions depends largely

on how the participants communicate with each other. [41] hand-

book provides practical guidance and resources for VOM in the case of

property crimes, minor assaults, and, more recently, crimes of severe

violence, where family members of murder victims request a meeting

with the offender. Since most of these cases are of a highly sensitive

nature, participants manifest emotional states when interacting with

the others that can be physically observed through their non-verbal

communication [20].

Recently, a number of studies have proposed ways in which per-

sonality traits can be inferred from multimedia data [27] and which

can be applied directly to the approach taken by Restorative Justice.

The prediction of these responses takes a particular interest in meet-

ings involving a limited number of participants. For instance, in [36]

the goal was both to detect the social signals produced in small group

interactions and to emphasize their importance markers. In addi-

tion, the works of [3,22] combined several methodologies to analyze

non-verbal behavior automatically by extracting communicative cues

from both simulated and real scenarios. Additionally, information ob-

tained from speech is commonly used [19,42], as is other informa-

tion obtained from ambient and wearable sensors [35]. In [13], both

the interest of observers and the dominant participants are predicted

solely on the basis of behavioral motion information when looking

at face-to-face (also called vis-a-vis or dyadic) interactions. Further-

more, there are many interdisciplinary, state of the art studies exam-

ining related fields from the point of view of social computing, some

of which are summarized in [28,29].

In most of these frameworks, it can be observed that both ambient

intelligence and egocentric computing methods are defined. Ambient

intelligence refers to electronic environments that are sensitive and

responsive to the presence of people, whereas egocentric computing
efers to the use of wearable devices. However, because of the need

o avoid wearing intrusive egocentric devices, some ambient sensors

hat provide multi-modal data might be considered. In [22], a custom

eveloped system is applied in a real-case scenario for job interviews.

he data acquisition procedure is performed using different types of

amera, by setting them up in different positions and with different

anges for capturing visual and depth information. Similarly, scenes

ith non-invasive systems have been proposed in other studies, such

s [30], which provides trajectory analyses from body movements

nd gestures. Furthermore, audio information has been analyzed in

6], with the objective of modeling descriptors for speech recogni-

ion. Beyond these works, in this paper we propose another mid level

f abstraction to obtain behavioral indicators based on communica-

ive cues, which are able to better explain those features that are di-

ectly extracted from multi-modal data. Moreover, these behavioral

eatures will be combined to describe additional behavioral indica-

ors and analyze their influence in VOM scenarios.

The analysis of the participants from a computer vision point of

iew use to be defined by region of interest detection, description,

nd tracking, usually involving the face or hands. These regions pro-

ide discriminative behavioral information, or adaptors, which are

ovements, such as head scratching, indicative of attitude, anxi-

ty level and self-confidence [24]; or beat gestures, which are small

aton-like movements of the hands used to emphasize important

arts of speech with respect to the larger discourse [25]. However,

s explained in [22,26], body posture is also found to be an impor-

ant indicator of a person’s emotional state. Additionally, another

otential source of information is provided by facial expressions

33,42].

In order to analyze these visual features automatically most ap-

roaches are based on classic computer vision techniques applied to

GB data. However, extracting discriminative information from stan-

ard image sequences is sometimes unreliable. In this sense, recent

tudies have included compact multi-modal devices which allow 3D

artial information to be obtained from the scene. In [37], the authors

roposed a system for real-time human pose recognition including

epth information for each image pixel. This new source of informa-

ion has been recently exploited for creating new human pose de-

criptors by combining different state of the art RGB-depth features

18], as well as they are used in a large amount of Human Computer

nteraction (HCI) applications [21].

Once body features are computed, behavioral indicators can be

nalyzed by studying their trajectories using pattern recognition ap-

roaches. Some of the methods in this context are based on dynamic

rogramming techniques such as Dynamic Time Warping (DTW) [18]
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Fig. 2. Acquisition architecture. E1, E2, F1, F2, D1, D2 are the participants codified by

their respective positions (E: left, F: front, D: right); the angles of view for the different

cameras are the same, and hence α1 = α2 = α3.
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r involve statistical approaches, such as Hidden Markov Models

HMM) and Conditional Random Fields (CRF) [39,40,45].

Once data from the environment have been acquired and pro-

essed to define a set of behavioral features, they serve as the basis

or modeling a set of communication indicators. For instance, in [44],

he authors outline a system for real-time tracking of the human body

ith the objective of interpreting human behavior.

In this paper, we propose the first state of the art non-invasive am-

ient intelligence framework for the semi-automatic analysis of non-

erbal communication in VOM processes. We extract a set of multi-

odal audio-RGB-depth features and behavioral indicators, which

re then used to measure the degree of receptivity, agreement, and

atisfaction using state of the art machine learning approaches and

he ground truth defined by the mediators in the VOM sessions. As

result, we find that our technology achieves a high correlation be-

ween the most relevant features obtained by the behavioral indica-

ors and the information provided by the experts.

. Data collection

An environmental study was undertaken in the various rooms in

hich recording was to take place, and in which the non-invasive

evices were to be set up. Once the environmental study had been

ompleted, decisions regarding the ethical constraints that had to be

atisfied were taken in order to protect the recorded data. This pro-

edure involved the drawing up of three fundamental ethical docu-

ents: the researchers’ signed undertaking, informed consent, and

he case-codification.

As the sessions typically involve two or three participants, the ho-

ogeneous distribution of the cameras enabled us to capture at most

wo people-per-camera. Specifically, the devices used were three

inectTM sensors and two laptops (which varied depending on the

umber of participants). Thus, a maximum of six people could be

ecorded.1Fig. 2 shows the ambient intelligence setup with all the el-

ments involved and their distribution.

Recordings were made in various towns and cities of Catalonia.

ost of them were made in the capital city of Barcelona with a total of

5 sessions, followed by Vilanova i la Geltrú with a total of four. Two

essions were recorded in each of Manresa, Tarragona, and the youth
1 The maximum number of people in the recorded sessions was five. t
enitentiary center in Granollers. Finally, one session was recorded in

errassa.

Thus, 26 VOM sessions were recorded, with a duration from

0 min to 2 h depending on the session, and an overall average of

5 min among all sessions. For each session, a mediator engaged in a

onversational process with different parties. Of the total number of

essions, 15% were joint encounters, with both parties (victim and of-

ender) being present in the VOM. The remaining sessions were indi-

idual encounters involving one or other of the parties and the medi-

tor. Some of the sessions also involved accompanying persons, either

professional from the specific center, or experts in some particular

eld relevant to the case under discussion.

Each recorded session2 provided audio-RGB-depth information.

hese modalities were registered using the camera parameters, and

ynchronized between the various devices through the system clock.

he set of images for each session were recorded at a resolution of

40 × 480 and at an average of 12 frames per second (fps), both for

GB and depth information. Each audio channel, belonging to one of

he four microphones spread out linearly along a multi-array micro-

hone, processed 16-bit audio at a sampling rate of 16 kHz. The dis-

ance between participants and the KinectTM device was between 1

nd 2 m depending on the recording facility.

As the data protection regulations only allow one mediator to an-

otate each session, the annotators were those mediators that had

reatest familiarity with the case being dealt with in each session.

nly in a few isolated cases there were two mediators in the session.

hus, in some cases the questionnaires completed by the mediators,

ecording their impressions and feelings regarding the party/ies and

he overall sessions, were subsequently confirmed by a second medi-

tor from the team so as to guarantee the consistency of the defined

round truth values. The system responses were determined by con-

idering both the state of the art methods for the study of behavioral

raits in people involved in similar scenarios, as presented in Section 2

3,13,19,22,27–29,35,36,41,42], and in the subsequent discussion held

ith the mediators, taking into account the aims of their work with

he Department of Justice. Finally, we defined the system’s ground

ruth as:

• Receptivity: degree of engagement shown by each party during

the session.
• Agreement: degree of agreement reached between the parties

(quantified globally for each session).
• Satisfaction: degree of agreement reached between the parties

in relation to the mediator’s expectations (quantified globally for

each session).

The quantitative nature of these social responses was validated by

randomly selected mediator who had not been involved in that case

o as to obtain a more objective evaluation. This approach was like-

ise applied to two features describing the evolution in the level of

ervousness manifest by each party at the beginning and at the end

f the process, respectively. Therefore, for each session and for each

arty, mediators ranked the observed quantity of these behavioral in-

icators from 1 to 5, where 1 is the lowest value and 5 the highest.

able 1 shows a numerical summary of the data acquired.

. Proposed method

The proposed framework consists of three main sequential mod-

les illustrated in Fig. 3. The first module includes the multi-modal

eature extraction from audio-RGB-depth data. The steps for obtain-

ng multi-modal features from different sources of information are

he speaker diarization, user segmentation, and region detection.
2 See an example of the different modalities and visual extracted visual features in

he supplementary video material sample.
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Table 1

Summary of data acquired.

Individual encounters 22

Joint encounters 4

Total sessions 26

Penitentiary centers 1

Office centers 4

Total justice centers 5

Mediators 7

Parties 30

Total no participants 37

Total no frames 1,436,400

Average no minutes/session 35

Fig. 3. Modules of the proposed system.
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Once the multi-modal features have been extracted, they are used

to define the behavioral indicators to be learnt and classified.

The remainder of this section describes the different parts of the

multi-modal feature extraction block of Fig. 3, followed by the behav-

ioral indicators, and finally the learning and classification of receptiv-

ity, agreement, and satisfaction labels.

4.1. Audio analysis: speaker diarization

In order to obtain the audio features, we use a diarization scheme

based on the approach presented in [9]. These features correspond to

state of the art methods for audio descriptions, which have been suc-

cessfully applied in several audio analysis applications [1,2,32]. The

process is described below:

Description. The input audio is analyzed using a sliding-window of

25 ms, with an overlap of 10 ms between consecutive windows, and

each window is processed using a short-time Discrete Fourier Trans-

form (DFT), mapping all frequencies to the Mel scale. A more precise

approximation of this scaling for frequencies used in Mel Frequency

Cepstral Coefficients (MFCC) implementations, is represented as:

f̂mel = kconst · logn

(
1 + f̂lin

Fb

)
, (1)

where Fb and kconst are constant values for frequency and scale, re-

spectively. The Koenig scale f̂lin is exactly linear below 1000 Hz and

logarithmic above 1000 Hz. In brief, given N-point DFT of the discrete

input signal x̃(n),

X̃(k) =
N−1∑
n=0

x̃(n) · exp

(
− j̃2πnk

N

)
, k = 0, 1, . . . , N − 1, (2)
p

filter bank with several equal height triangular filters is constructed.

ach of these filters has boundary points expressed in terms of posi-

ion, which depends on the sampling frequency and the number of

oints N in the DFT. Finally, the Discrete Cosine Transform (DCT) is

sed to obtain the first 13 MFCC coefficients. These coefficients are

omplemented with the first and second time-derivatives of the Cep-

tral coefficients.

peaker segmentation. Once the audio data are properly described by

eans of the aforementioned features, the next step involves iden-

ifying the segments of the audio source which correspond to each

peaker. A first coarse segmentation is generated according to a Gen-

ralized Likelihood Ratio, computed over two consecutive windows

f 2.5 s. Each block is represented using a Gaussian distribution,

ith a full covariance matrix, over the extracted features. This pro-

ess produces an over-segmentation of the audio data into small ho-

ogeneous blocks. Then, a hierarchical clustering is applied to the

egments. We use an agglomerative strategy, where initially each

egment is considered as a cluster, and at each iteration the two

ost similar clusters are merged, until the stopping criterion of the

ayesian Information Criterion (BIC) is met. As in the previous step,

ach cluster is modeled by means of a Gaussian distribution with a

ull covariance matrix and the centroid distance is used as the link

imilarity. Finally, a Viterbi decoding is performed in order to adjust

he segment boundaries. Clusters are modeled by means of a one-

tate HMM using GMM as our observation model with diagonal co-

ariance matrices. Since most of the participants appear in just a sin-

le mediation session, we do not learn any speaker models from the

luster GMMs. Therefore, models extracted from one session are not

sed in the diarization process of other sessions.

.2. User detection

Both RGB and depth data are used for the postural and behavioral

nalyses of the parties. In this sense, the first step involves perform-

ng a limb-segmentation of the body based on the Random Forest

ethod of [37]. Fig. 1(c) shows a user detection example of applying

his segmentation. Once regions of interest have been located, it is

f particular interest to obtain real-world distance values for certain

omputed features so that they are comparable between different

ubjects. To do this, we employed a similar procedure to that ex-

lained in [15], which converts the 2D pixels into 3D real-world

oordinates using the KinectTM depth values. However, since these

aw sensor values returned by the depth sensor are not directly

roportional to the depth, in [15], they scale with the inverse of

he depth. Therefore, each pixel (ẋ, ẏ) of the depth camera can be

rojected to metric 3D space as:

= (ẋ − δx)
d(ẋ, ẏ)

κx
, y = (ẏ − δy)

d(ẋ, ẏ)

κy
, z = d(ẋ, ẏ), (3)

here (x, y, z) will be the real world coordinates, and δx, δy, κx, κy, the

ntrinsics of the depth camera. These values will be computed over

he detected interest regions in order to define the communicative

ndicators described in next sections.

.3. Region detection

This section describes the different feature extraction modules ap-

lied to the visual data source once the user has been segmented.

pecifically, we perform an analysis of the face, hands, and upper

ody, as well as visual movements in these regions during conver-

ations.

.3.1. Face analysis

We are primarily concerned with obtaining the head pose angle

f each of the participants in the session. To do this, we base our ap-

roach on that of [46] which uses a set of face models. The face model
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Fig. 4. Examples of how the semi-automatic heuristic procedure of [31] works on two pairs of frames of a session. The correction of false positives is shown, improving the

continuity of the detection of positive regions of interest between consecutive frames. Image (a) shows a false positive detection for the face region, whereas image (b) shows its

correction with the proper fitting. Image (c) shows false positive detections for the hand regions, choosing those blobs obtained by means of skin segmentation having highest

optical flow with respect to the previous frame. Image (d) shows the correction of these regions by comparing them with the positive hand detections, recovered from the previous

frames.
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s based on a mixture of trees with a shared pool of parts, where ev-

ry facial landmark is modeled as a part and global mixtures are used

o capture topological changes due to viewpoint. Global mixtures can

lso be used to capture gross deformation changes for a single view-

oint, such as changes in expression. On the other hand, the detection

f the head pose angle is performed by averaging HOG feature as a

olar histogram over 18 gradient orientation channels, as computed

rom the entire PASCAL 2010 data set [14]. In Fig. 1(a) we can visualize

he set of computed features plotted on the detected face.

While face detection takes place for each tested image, we use the

emi-automatic heuristic procedure of [31] so as to improve the con-

inuity of positive detections of regions of interest in the person be-

ween consecutive frames, and to correct possible erroneous detec-

ions due to the inherent difficulties of the problem at hand. Fig. 4(a)

nd (b) shows an example of correcting a false positive detection.

.3.2. Hand analysis

Given that the skeletal model computed from the person segmen-

ation image [37] does not offer an accurate fit of the hand joints in

ur particular scenario, we designed a semi-automatic procedure for

and detection.

First, hands are manually annotated in the starting frames of each

ession to perform posterior color segmentation for the rest of the

rames. In this way, a GMM is learned with the marked set of most

ignificant pixels, defining the skin color model of the person. Then,

ubsequent frames are tested within the GMM built using a threshold

, discriminating those pixels belonging to the skin color from those

elonging to the background. The resulting blobs are filtered using

athematical morphology closing operation with a 3 × 3 square

tructured element to discard noise and to obtain smoother regions.

nce the set of blobs has been obtained, we need to choose those

wo candidates that belong to the hand regions. This is performed by

omputing the optical flow between consecutive frames, which al-

ows to discard noise in those cases in which we obtain more than

wo blobs by retaining those with higher movement. The bounding

oxes of Fig. 4(c) show an example of detections (left is incorrect)

sing this procedure.

To improve the detection, we use the same heuristic procedure as

hat applied to the face analysis step for choosing, in this case, the two

est hand candidates. Image (d) of Fig. 4 shows an example of how the

euristic procedure corrects false positive detections on the regions

f the hands. The incorrect regions detected in the first instance are

he blobs presenting the highest optical flow, and then the heuristic

rocedure corrects these regions by comparing them with the hand

egions obtained from the previous frame. As in face detection, man-

al annotation may be required in those cases where the heuristic

rocedure needs to be re-initialized. For this task, an interface has

een designed for the manual annotation of the hand regions for the

et of frames in which this occurs. When the user makes any anno-
ation, the GMM color model is newly re-constructed at this frame

sing the marked pixel positions, and the whole process is repeated.

n this case, using the proposed heuristic we also found similar reduc-

ion regarding manual interaction effort as in the case of face region

etection.

Once we have obtained the blobs belonging to the hand regions,

he extremes with higher optical flow magnitude are used to obtain

D hand positions. Finally, these positions are transformed to 3D real

orld coordinates using Eq. (3).

.3.3. Upper body analysis

As presented above, the probability of each pixel of an image be-

onging to a labeled body part is computed using depth features. This

nformation is used for the subsequent calculation of optical flow on

GB images where the upper body region appears. Therefore, each

ixel ṗ of the image I, detected by Random Forest, with high proba-

ility of being part l of the person, is used to calculate the optical flow.

inally, an average σ̄ of optical flow is computed for the upper body

egion, which is later used to define behavioral indicators.

.4. Behavioral indicators

Once the multi-modal features have been extracted, we use them

o build a set of behavioral indicators that reveal communicative cues.

his set of behavioral indicators defines the final feature vector for

ach party within the VOM process. This information is of great inter-

st in detecting the response of subjects to certain feelings or emo-

ional states during the conversation [20]. In particular, since the be-

avioral cues of the mediators are not of interest for our purposes

ere, we focus mainly on those of the parties.

.4.1. Target gaze codification

The head pose and the face is obtained by applying the methodol-

gy explained in Section 4.3.1. In a given session, we compute the cor-

elations between the head pose angles belonging to each participant

nd the positions taken by the remainder participants in that session.

ence, we identify the visual focus of attention among the different

articipants in the conversation [3,5,23]. For this purpose, different

anges are assigned to each participant in terms of angle limits. Given

hat the participants belonging to the same party are seated in ad-

acent positions (see acquisition architecture in Fig. 2), each range

epresents a possible participant vision field of his/her gaze towards

he target party. Thus, given a frame of the session and a participant,

f his/her head pose angle falls within a particular range, then the

arty found within that range is identified as the target gaze of this

articipant for that frame, which means the participant is looking at

his party. Since sessions have different setups, they may consist of

ne or two parties (and the mediator), each with a different num-

er of participants. Therefore, the ranges require manual assignment
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Table 2

Summary of behavioral indicators defining each feature vector. The last two fea-

tures derive from the mediator surveys.

Feature Brief description

f1 Party’s role within the VOM session (victim or offender)

f2 This party looks at the other

f3 The other party looks at this party

f4 This party looks at the mediator

f5 The mediator looks at this party

f6 Body posture inclination of this party

f7 Gender of the mediator

f8 Gender of this party

f9 Gender of the other party

f10 Age of the mediator

f11 Age of this party

f12 Age of the other party

f13 Session type (individual/joint encounter)

f14 Upper body agitation of this party

f15 Upper body agitation of this party while looking at the other party

f16 Upper body agitation of this party while looking at the mediator

f17 Hands agitation of this party

f18 Hands agitation of this party while looking at the other party

f19 Hands agitation of this party while looking at the mediator

f20 Hands agitation of the mediator while looking at this party

f21 Hands agitation of the other party while looking at this party

f22 Hands together of this party

f23 Hands of this party touching the face

f24 Hands of this party are under the table

f25 Mediator speaking time

f26 Speaking time of this party

f27 Speaking time of the other party

f28 Mediator speaking turns

f29 Speaking turns of this party

f30 Speaking turns of the other party

f31 Mediator interrupts this party

f32 This party interrupts the mediator

f33 This party interrupts the other party

f34 The other party interrupts this party

f35 Nervousness of this party at the beginning

f36 Nervousness of this party at the end
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depending on each session setup. Then, the target gazes are automat-

ically identified for all the frames of the session.

Fig. 1(a) shows an example of crossed gazes between the mediator

and a party in a real VOM session. Finally, we compute the time per-

centages of target gazes for each party. Therefore, for any given party,

there is a total of 6 indicators for representing the target gazes ({f15,

f16} and { f18 − f21} from Table 2).

4.4.2. Agitation estimation

As explained in Section 4.3.2, 3D positions belonging to the hand

regions are computed from the extreme positions of higher optical

flow. From these positions, we are able to quantify the movement

for each region between consecutive frames. For this purpose, let

F = {ι1, ι2, ι3, . . . , ιλ} be a set of consecutive frames. This set of frames

belongs to a video session v ∈ V, being λ = r the maximum length of

the set. Then, for each region we compute the average agitation over

all the frames ι ∈ F as:

Ah = 1

λ

λ∑
ι=1

	ι
h, (4)

where 	ι
h

= 	ι
p + 	ι

q are the displacements among 3D positions of

hands h (left p and right q) between frames ι and ι − 1, computed

using Euclidean distance. Therefore, Ah contains the accumulated av-

erage of displacements produced by both hands between frames F.

On the other hand, in Section 4.3.3 we explained how the average

optical flow σ̄ is obtained for the upper body region. Therefore, if we

denote as σ̄ι the average optical flow of the upper body for a given
rame ι ∈ F, then:

b = 1

λ

λ∑
ι=1

σ̄ι, (5)

here Ab contains the accumulated average of optical flow produced

y the upper body between frames F.

In short, for each party and session, agitation averages are com-

uted over processed frames, with a total of 8 agitation indicators

{ f14 − f21} from Table 2), either alone or in combination with

ther indicators. The idea of combining these indicators with other

ehavioral features is inspired by [10,13]. In this case, we consider

combination between the features describing the agitation from

he upper body and those describing the hands while looking at the

articipants, as in [31].

.4.3. Posture identification

From the 3D body position, we detect the body posture as one be-

avioral indicator, which may describe the engagement (or involve-

ent) of the party within the VOM session. Our description of body

osture is classified into three main positions (tilted backward, nor-

al, tilted forward), where the posture selected is the one that has

he most occurrences over the processed frames.

In addition, 3D hand positions are used to detect where the hands

re along the processed frames, in terms of average and time per-

entages. In particular, we discriminate three cases (i.e. 3 indicators):

ands together, hands touch the face, and hands under the table. This

s done in a similar way as for the agitation estimation, using Eu-

lidean distance computed over 3D positions.

• Hands together: We compute for each frame the distance be-

tween left and right hand positions belonging to the target sub-

ject, and we consider the frames where the distance values are

below that of a threshold. Finally, we compute the time percent-

age for those frames where the target subject appears with their

hands together.
• Hands touch the face: We compute for each frame the distance

between each hand position and the position belonging to the face

center of mass obtained in Section 4.3.1. Then, we consider the

frames where the distance values are below that of the threshold.

Finally, we compute the average distance for those frames where

the target subject appears with their hands touching their face.
• Hands under the table: For each frame, we first perform a seg-

mentation of the tables using [34] to obtain planar objects within

images. Then, we compare the 3D positions of both hands with the

position of the tables in order to discriminate the two possibilities

where the hands may appear under or above the table. Finally, we

compute the time percentage for those frames where the target

subject appears with their hands under the table. Fig. 1(b) and (c)

illustrate an example of this procedure, showing respectively the

input depth image and its segmentation.

.4.4. Speech turns/interruptions detection

The speaker diarization process of Section 4.1 detects time seg-

ments belonging to each participant in the VOM process. In order to

extract the degree of interaction, we not only use the length of time

during which each participant speaks, but we also count the number

of turns in each session. This enables to differentiate between a ses-

sion where each party expresses its position from a session in which

a conversation is maintained between the VOM participants. Apart

from the quantification of turn taking, a relevant indication in the so-

cial communication analysis is the detection of interruptions, which

are related to the dominance and respect between two persons [11].

Using the time between turns, we compute the percentage of turns

in which a participant interrupts another one.
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Table 3

Accuracy considering the first grouping case and all features.

Label AdaBoost LDA PNN CF FF SVM

Satisfaction 57% 32% 57% 57% 86% 57%

Agreement 50% 54% 64% 64% 75% 64%

Receptivity 64% 50% 71% 71% 68% 75%

Table 4

Accuracy considering the second grouping case and all features.

Label AdaBoost LDA PNN CF FF SVM

Satisfaction 82% 43% 21% 82% 75% 82%

Agreement 71% 43% 29% 71% 75% 75%

Receptivity 75% 36% 39% 68% 75% 61%

Table 5

Accuracy considering the first grouping case and withholding the ner-

vousness features.

Label AdaBoost LDA PNN CF FF SVM

Satisfaction 57% 57% 57% 68% 64% 57%

Agreement 50% 43% 64% 57% 71% 64%

Receptivity 68% 46% 71% 75% 68% 75%

Table 6

Accuracy considering the second grouping case and withholding ner-

vousness features.

Label AdaBoost LDA PNN CF FF SVM

Satisfaction 82% 61% 21% 71% 86% 82%

Agreement 71% 57% 29% 71% 79% 75%

Receptivity 79% 46% 39% 64% 71% 61%
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.5. Classification

The total number of behavioral indicators is 36 (see [31]), which

efine the feature vector for each sample in our data set. Here, we

efine a sample as each party participating in a VOM session. Thus,

f a session involves two parties and the mediator, we introduce one

ample of 36 features for each of the two parties. On the other hand, if

session involves just one party and the mediator, we introduce only

ne sample corresponding to the party involved. Each party of a video

ession is a sample for the classification task, and the total number of

sed samples is 28.

As explained in Section 3, the observations of the classification

ask are the accuracies achieved by the system when predicting re-

eptivity, agreement, and satisfaction. Then, the correlation can be

bserved between the observations predicted by the system and the

mpressions recorded by the mediators. These opinions are quanti-

ed values of receptivity, agreement, and satisfaction presented in

elation to the parties involved in the VOM session, and represent

he ground truth of our system. The ground truth values are as-

igned to each sample of the data set. Since agreement and satisfac-

ion are globally assigned for each session, those sessions containing

wo parties will share the same ground truth labels of agreement and

atisfaction for both generated samples, meanwhile the receptivity

round truth value is assigned to each sample (party) independently.

Learning is then performed on these samples and their features as

binary classification problem, grouping into two classes the quan-

ifications performed by the mediators. To do this, we employ four

lassical techniques from the machine learning field: AdaBoost [16],

upport Vector Machines (SVM) using a Radial Basis Function (RBF)

7], Linear Discriminant Analysis (LDA), and three kinds of Artificial

eural Networks (ANN), in particular Probabilistic Neural Networks

PNN) [38], and Cascade-Forward (CF) and Feed-Forward neural net-

orks (FF) [17]. In addition to the binary classification analysis we

lso conduct a regression study using epsilon-SVR (Support Vector

egression) [7] in order to predict continuous quantifications of the

hree labels.

. Experiments

.1. Setting and validation measurements

The measurements for the features referring to the gaze, inter-

ction of hands, and the position of hands respect to the table, are

ime percentages. The features referring to agitation, combination of

gitation and gazes, and interaction of hands with the face, contain

veraged values of optical flow or distances, all of them taking into

ccount the processed frames of a session. The features referring to

he speech are turn taking percentages, where a turn means that the

peaker changes. Finally, the remaining features, including nervous-

ess features, are codified either into binary values or discrete values

ithin a certain range, having 5 as the maximum range length.

In addition, an alternative was implemented where some features

re divided into two -one belonging to the first half, the other to the

econd half of the session-. This procedure was initially performed

o identify behavioral changes in subjects during the different halves

f the session. However, no significant differences were found and,

ence, we finally used the set of features without any temporal seg-

entation.

Learning is performed using leave-one-out validation, keeping

ne sample out of the testing each time. Since the total number of

amples is small and the ground truth values are quantified within

anges [1–5] (as for the nervousness features), we simplified the

roblem by grouping the different response degrees into binary

roups, but we also performed a posterior regression analysis. In the

ase of a binary setup, the value 3 can be considered as being either
igh or low. For this reason, we ran the experiments twice to test each

rouping case, as we show in the result Tables 3–6:

• First grouping case: Degrees of quantification {1, 2, 3} versus {4,

5}.
• Second grouping case: Degrees of quantification {1, 2} versus {3,

4, 5}.

In our experiments, we awarded the standard value of 50 to the

umber of decision stumps in the AdaBoost technique. For the SVM-

BF and epsilon-SVR, we experimentally set the cost, gamma, and ep-

ilon parameters by means of the leave-one-out validation for each

ocial response and minimizing regression deviation on the train-

ng set. Finally, we applied the same tuning procedure for the three

tandard neural network parameters: a Probabilistic Neural Network

PNN) with a spread value of 0.1 for the radial basis functions, and

ascade-Forward (CF) and Feed-Forward (FF) neural networks, both

ith a single hidden layer with 10 neurons values and Levenberg–

arquardt back-propagation training function. The results obtained

re shown in terms of accuracy percentages.

Due to the sensitive nature of the VOM process, never before (to

he best of our knowledge) have mediators recorded their sessions

o that they might subsequently analyze the cases. In this respect,

herefore, the first results to emerge from this study are the session

ideos themselves, which are valuable materials via which the me-

iators can share their experiences and obtain feedback to improve

heir mediation skills.

.2. Results

The predictions addressed in our classification task focus on three

ndicators: the degree of receptivity of the parties, the level of agree-

ent reached, and the degree of mediator satisfaction. Tables 3 and 4

how the results obtained when employing the different techniques
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Fig. 5. Weighted feature selection when using AdaBoost and SVM for the grouping re-

sponse cases presenting the highest accuracy when predicting receptivity, agreement,

and satisfaction. Each line represents the relative feature weights assigned by the clas-

sifiers within the range [0, 1], either employing all features or without the nervousness

features f35 and f36.
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and using the complete set of behavioral indicators of Table 2. Note

that as the features of nervousness are subjective indicators that are

not automatically computed, we repeated the experiments without

these two features. These results are shown in Tables 5 and 6, where

the prediction is also analyzed under the grouping hypotheses. The

most accurate results among the four tables for the three responses

are shown in bold, showing both which classifier and which group-

ing case give the best performance for each feature description. Once

again, the results show a correlation between the features extracted

and the categories selected. The percentage degree of accuracy in the

predictions is then compared for the different techniques: AdaBoost,

SVM, LDA, PNN, CF, and FF. It can be noted that, except for PNN and

LDA (which are not good techniques for use with our dataset), all the

classifiers are able to make predictions about the random decision.

This indicates that there is a correlation between the captured data

and the information that we want to predict. The most predictable

social response is that of satisfaction, presenting an accuracy of 86%

with the FF, followed by 82% with AdaBoost, SVM, and CF. The best

result when predicting agreement was an accuracy of 79% with FF

and, similarly, when predicting receptivity, the best accuracy was 79%

with AdaBoost. These results are quite significant since most of the

sessions presenting high values for this combination of responses re-

sulted in satisfactory VOM outcomes. However, since the number of

samples is, in general, small, all responses vary in their performance

depending on the grouping hypothesis, despite the low level of pres-

ence of the 3-value among the quantitative responses. This means

that the uncertainty of the mediator when assigning a value of 3 to

the answers tends to add noise to the overall data with respect to the

evaluation.

The result tables show that CF and FF (and even LDA) vary sig-

nificantly in their predictions depending on whether the nervous-

ness features are considered or not. This indicates that the subjective

evaluation of the mediator adds an important weight to the system

for half of our classifiers. Moreover, the variability in performance

presented by the remaining classifiers in relation to these two cases

leads us to analyze the relevance of these features in each case. Thus,

we performed a comparison to identify the most relevant features

for each social response. In this way, we also analyzed the influence

of the nervousness features when choosing the most relevant of the

other features. We performed a weighted feature selection using [12]

and [8] for AdaBoost and SVM, respectively. For each response (recep-

tivity, agreement, and satisfaction), we selected those features only

for the cases giving the highest degree of accuracy (see the different

plots in Fig. 5). In general, we observe that agitation features and the

mediator’s speaking turns are chosen as the most relevant features

when predicting satisfaction. By contrast, the feature chosen as being

most relevant for predicting agreement is the age of the mediator. In

the case of receptivity, the fact of withholding the nervousness fea-

tures results in the most significant changes in the feature selection

with respect to the other responses. However, both hand agitation,

gaze, and the combination of the two are chosen as being the most

relevant features when predicting receptivity. On average, the most

relevant features for all the responses are those involving the com-

bination of gaze and the agitation of the body regions. This means

that these are the most discriminating behavioral indicators in the

prediction of the degree of receptivity, agreement, and satisfaction in

a conversation such as that maintained in a VOM process. This fea-

ture selection procedure has direct implications for the observational

methodology of non-verbal communication, since it allows experts

in the field of psychology and restorative justice to focus, in any given

conversation, on the most discriminating behavioral indicators auto-

matically selected through artificial intelligence.

Finally, we relate the overall training data to the different ground

truth annotations using the epsilon-SVR regression strategy. In this

case, when using the leave-one-out strategy, we obtain a prediction

for each sample within the same range as the quantified annotations
1, 5]. In this setting, we also ran the experiment twice: first, we

onsidered all features, and then left out the nervousness features.

oth cases gave similar average distances when predicting satisfac-

ion, agreement, and receptivity, with values of 0.59, 0.64, and 0.68,

espectively. This mean deviation with respect to the ground truth

abels was found accurate and of interest to the team of mediators.

. Conclusion

We proposed a multi-modal framework for the semi-automatic

nalysis of non-verbal communication in VOM sessions. We showed

he usability of computer vision, signal processing, and machine

earning strategies in conversational processes. Specifically, we com-

uted a set of multi-modal features from multimodal data. Then, we

efined an automatic computation of behavioral indicators used as

nal features for learning and classification tasks. We demonstrated

he applicability of the system to be used in the restorative justice

eld as a tool for mediators, obtaining recognition accuracies of 86%

hen predicting satisfaction, 79% when predicting both agreement

nd receptivity, and a high correlation in the regression analysis.
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As future work, we plan to improve the dataset and responses,

nd to incorporate new features. In the case of the data, we hope to

apture more samples so as to be able to perform more accurate pre-

ictions, providing continuous ground truth information by means of

ntra-mediator estimations. In the case of the predictions, new data

hould allow the continuous prediction of each degree of the behav-

oral indicators. Moreover, it will enable us to perform frame-based

redictions, analyzing the evolution of each indicator throughout the

OM process, and to detect the exact instant when a party accepts

he possibility of reaching an agreement. Finally, we plan to incor-

orate emotional state features obtained from facial expressions [33]

nd audio data [4].
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