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López · Sergio Escalera ·
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Abstract The Bag of Visual Words (BoVW) is an established representation
in computer vision. Taking inspiration from text mining, this representation
has proved to be very effective in many domains. However, in most cases,
standard term-weighting schemes are adopted (e.g., term-frequency or tf-idf).
It remains open the question of whether alternative weighting schemes could
boost the performance of methods based on BoVW. More importantly, it is
unknown whether it is possible to automatically learn and determine effective
weighting schemes from scratch. This paper brings some light into both of these
unknowns. On the one hand, we report an evaluation of the most common
weighting schemes used in text mining, but rarely used in computer vision
tasks. Besides, we propose an evolutionary algorithm capable of automatically
learning weighting schemes for computer vision problems. We report empirical
results of an extensive study in several computer vision problems. Results show
the usefulness of the proposed method.
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1 Introduction

The Bag of Visual Words (BoVW) is a widely adopted representation for de-
scribing the content of images and videos in computer vision problems [42].
This representation is the analogy of the Bag of Words (BoW) representation
used in text mining and information retrieval: BoVW accounts for the presence
and absence of prototypical patterns (called visual words, and playing the role
of words in text processing) that are obtained from training images. This rep-
resentation has obtained outstanding results in a large number of scenarios [42,
50,3,30,35,9,5,43,13].

In spite of its effectiveness and popularity, most implementations of BoVW
adopt pretty standard weighting schemes, that is, the mechanisms that deter-
mine the contribution that visual words have for describing the content of
images and videos. For instance, the most common scheme is term frequency
where the BoVW representation is an histogram that accounts for the occur-
rences of visual words in the image or video. Although competitive perfor-
mance has been obtained with this formulation, we think it is worth studying
alternative weighting schemes.

This paper explores the suitability of using alternative term-weighting
schemes for image and video representation. On the one hand, we report an
evaluation of the most common weighting schemes used in text mining, but
rarely used for computer vision tasks. Our study comprises unsupervised and
supervised weighting schemes. More importantly, we propose an evolutionary
algorithm capable of automatically learning weighting schemes for computer
vision problems from scratch. The evolutionary algorithm explores the search
space of possible weighting schemes that can be generated by combining a
set of primitives with the aim of maximizing the classification/recognition
performance. We perform experiments in landmark problems in computer vi-
sion, namely: image categorization (different subsets of the Caltech-101 data
set [16]), gesture recognition (the newly introduced Montalbano data set [15]),
action recognition (MSRDaily3D Data [47]), places-scene recognition (the well
known 15-scenes [30]), insect and bird classification [29,31] and adult image
classification [49]. Experimental results show the effectiveness of the proposed
method.

A previous version of this work was published in [12]. Compared to that
work, this paper provides a more detailed explanation and motivation for the
proposed approach. Furthermore, we extend the experimental evaluation by
including additional data sets that correspond to other domains not explored
previously. Finally, we also perform a deeper analysis on the resulting weight-
ing schemes.

The remainder of this paper is organized as follows. Next section introduces
the BoVW representation and reviews related work. Section 3 presents com-
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mon and alternative weighting schemes that have been adopted in text mining
and information retrieval but that have not been used in computer vision.
Section 4 describes in detail the proposed methodology for evolving weight-
ing schemes. Next, Section 5 reports experimental results. Finally, Section 6
outlines conclusions and future work directions.

2 BoVW representation

In text mining and information retrieval, the BoW representation is a way to
represent documents as numerical vectors, with the aim that such vectorial
space captures information about their semantics and content [40]. The idea
is to represent a document by a vector of length equal to the number of terms
(e.g., words) in the vocabulary associated to the corpus under analysis. Each
element in that vector indicates the relevance/importance of the corresponding
term for describing the content of the document. Although the BoW makes
strong assumptions (e.g., that word order is not important), it is still one of
the most used representations nowadays1.

Under the BoW, the ith document is represented by a vector di = 〈xi,1, . . . ,
xi,|V |〉, where xi,j is a scalar that indicates the importance of the term tj for

describing the content of the ith document; V is the vocabulary, i.e., the set of
different words in the corpus. The way in which xi,j is estimated is given by the
so called term-weighting scheme. There are many ways of defining xi,j in the
text mining and information retrieval literature. Usually, xi,j carries informa-
tion about both: term-document relevance (TDR) and term-relevance (TR).
The former, explicitly measures the relevance of a term for a document, i.e.,
it captures local information. The most common TDR is the term-frequency
(TF) weight, which indicates the number of times a term occurs in a docu-
ment. On the other hand, TR aims to capture relevance of terms for the task at
hand, i.e. global information. The most common TR is the inverse-document-
frequency (IDF), which penalizes terms occurring frequently across the whole
corpus. Usually, xi,j combines one TDR and one TR weight.

Perhaps the most common combination is the TF×IDF weighting scheme [1,
42]. Although this is the standard scheme, for some tasks this may not be the
best choice. For instance, in supervised learning tasks, we have information of
labels for training samples. However, standard schemes disregard this useful
information. This is due to the fact that traditional schemes were originally
proposed for information retrieval (an unsupervised problem) [38,39]. Because
of this, recently supervised weighting schemes have been proposed in the text
mining community [7].

The success of the bag of words representation in the natural language
processing domain has inspired researchers in computer vision as well, and
currently the BoVW is among the most used representations for images and

1 One should note the text mining community has proposed variants that aim to soften
such assumptions, e.g., using n-grams [2], still the BoW is very competitive with such for-
mulations.
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videos [20,43,42,30,35,3,9,50,5,28]. In fact, this formulation has trespassed
the image and text boundaries, and it has been used for representing audio [34],
time series [46], accelerometer [19] signals, etc. In the computer vision analogy,
under the BoVW, an image is represented by a vector indicating the impor-
tance of visual words for describing the content of the image. In this scenario,
a visual word is a prototypical visual pattern that summarizes the information
of other visual descriptors extracted from training images. More specifically,
the vocabulary of visual words is typically learnt by clustering visual descrip-
tors extracted from training images. The centers of the resultant clusters are
considered as visual words. Commonly, visual descriptors (e.g., SIFT or HOG)
are extracted from points or regions of interest, see [20,50] for comprehensive
descriptions of the BoVW representation.

The effectiveness of the BoVW representation depends on a number of
factors, including the interest-point-detection phase, the choice of visual de-
scriptor, the clustering step, and the choice of learning algorithm for the mod-
eling task (e.g., classification) [50]. A factor that has not been deeply studied
is the role the term-weighting scheme plays. As in text mining, commonly
term-frequency or Boolean term-weighting schemes are considered. Despite
the fact these schemes have reported acceptable performance in many tasks
(including tasks from natural language processing), it is worth asking our-
selves whether alternative schemes can result in better performance. To the
best of our knowledge, the only work that aims at exploring this issue is the
work by Tirilly et al. [43]. The authors compare the performance of different
term-weighting schemes for image retrieval. They considered the most com-
mon schemes from information retrieval and provide a comprehensive com-
parative study. In our work we focus on classification/recognition tasks and
consider weighting schemes specifically designed for classification tasks: su-
pervised weighting schemes. In this paper we aim to answer such question
throughout an extensive experimental evaluation. In addition, we propose a
genetic programming algorithm to learn weighting schemes by combining a set
of primitives. One should note that there are efforts for improving the BoVW
in several directions, most notably, great advances have been obtained for in-
corporating spatio-temporal information [35,3,30,32,22]. The term-weighting
schemes developed in this work can also be applied in those scenarios.

Term-weighting learning with evolutionary algorithms has been studied
within information retrieval and text categorization domains [6,18,11]. In [6],
authors learn information retrieval weighting schemes with genetic program-
ming. They aim to combine a few primitives trying to maximize average pre-
cision. In [18,11], authors use genetic programming for learning weighting
schemes for text classification tasks. This work focuses on learning weight-
ing schemes for computer vision tasks.
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3 Common and alternative weighting schemes

As explained above, perhaps the most used weighting scheme for informa-
tion retrieval and text mining tasks is the so called TF × IDF [1,39]. Al-
though good results have been reported in many applications with it, alter-
native weighting schemes have been proposed aiming to capture additional
or problem-specific information with the goal of improving retrieval or clas-
sification performance [7,26,44,1]. For instance, for text classification tasks,
supervised term-weighting schemes have been proposed [7,26]. These alterna-
tives aim at incorporating discriminative information into the representation
by defining TR weights that account for the discriminative power of terms. For
instance, by replacing the IDF term (in the TF × IDF scheme) by a discrim-
inative term IG (the information gain of the term), resulting in a TF × IG
scheme. Common and alternative weighting schemes are described in Table 1.

Table 1 Weighting schemes used in text mining and information retrieval. For every scheme,
xi,j indicates how relevant the term tj is for describing the content of the ith document
under the corresponding weighting scheme. N is the number of documents in training data
set, #(di, tj) indicates the frequency of term tj in the ith document, df(tj) is document
frequency of the term tj , i.e., the number of documents in which term tj occurs, IG(tj) is
the information gain of term tj , CHI(tj) is the χ2 statistic for term tj , and TP , TN are
the true positive and true negative rates for term tj (i.e., number of positive, respectively,
negative, documents that contain term tj).

Acr. Name Formula Description Ref.

B Boolean xi,j = 1{#(ti,dj)>0} Prescense/abscense
of terms

[38]

TF Term-Frequency xi,j = #(ti, dj) Frequency of oc-
currence of terms

[38]

TF-IDF TF - Inverse Doc. Freq. xi,j = #(ti, dj) × log( N
df(tj)

) TF penalizing
corpus-based
frequency

[38]

TF-IG TF - Information Gain xi,j = #(ti, dj) × IG(tj) TF times term in-
formation gain

[7]

TF-CHI TF - Chi-square xi,j = #(ti, dj) × CHI(tj) TF times χ2 term
relevance

[7]

TF-RF TF - Relevance Freq. xi,j = #(ti, dj)×log(2+ TP
max(1,TN)

) TF times RF rele-
vance

[26]

The first three weighting schemes in Table 1 are common in text mining
and information retrieval, and their usage dates back to the 80s [38], being
the Boolean scheme the simplest one (only accounting for the occurrence of
terms). On the other hand, the last three schemes were proposed in the last
decade and still are not well known within text mining. To the best of our
knowledge, these alternative weighting schemes have not been evaluated in
the context of computer vision (see Section 2). Therefore, a first contribution
of this paper is to assess the suitability of such schemes for computer vision
problems. The next section introduces our evolutionary algorithm for learning
term-weighting schemes for the BoVW.
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4 Evolving visual-word weighting schemes

In addition to the evaluation of non traditional weighting schemes in computer
vision, a second contribution of this work is the proposal of an evolutionary
algorithm capable of automatically determining new weighting schemes from
scratch. Our proposal is motivated by the following observations. First, we
observe that traditional weighting schemes were proposed by researchers based
on their own expertise, biases, and needs. Also, so far, it has been the norm
to use the same weighting scheme for every data set under analysis. In fact,
in computer vision tasks, the weighting scheme is rarely considered a factor
that can have an impact on the performance of models based on the BoVW
formulation.

In this paper we address the question of whether the weighting-scheme
design process can be automated by employing evolutionary algorithms. Our
proposed method uses genetic programming to learn how to combine a set of
TDR/TR primitives with the aim of obtaining a weighting scheme that op-
timizes classification performance. This term-weighting-scheme learning for-
mulation removes, to some extent, designers biases and does not rely on user
expertise2. Instead, weighting schemes are sought such that they maximize
the performance in the task under analysis. Hence, our automatic technique
allows us to learn tailored schemes for every data set / task being approached.

Figure 1 presents a general diagram of the proposed approach. A set of
primitives is extracted from the BoVW representation of training images.
These primitives are obtained by counting visual words occurrence statistics.
Next, they feed a genetic program that learns how to combine such primitives
to generate a term-weighting scheme. The output of the genetic program is
a way to represent images that has been learned automatically. Next, both
training and test images are represented according to the learned scheme and,
finally, a predictive model is learned and their performance evaluated. The
remainder of this section describes our proposed method.

4.1 Genetic programming

Our solution to learn term-weighting schemes is based on Genetic Program-
ming (GP) [27]. GP is an evolutionary algorithm, that is an optimization algo-
rithm inspired by biological evolutionary systems. In evolutionary algorithms
solutions to the problem at hand are seen as individuals that interact among
them and with the environment (the search space) in such a way that the sur-
vival of the population is sought (optimization criterion). The general flow of
a typical evolutionary algorithm is shown in Figure 2: an initial population of
solutions/individuals is created (randomly or by a pre-defined criterion), after

2 Please note that traditional weighting schemes have been proposed by researchers based
on their own experiences and biases, making strong assumptions and relying on intuition.
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Fig. 1 General diagram of the proposed approach.

that, individuals are selected, recombined3, mutated and then placed back into
the solutions’ pool, this process is repeated for a given number of generations
and the algorithm returns the best individual found.

Fig. 2 A generic evolutionary algorithm.

3 Please note that in GP, for each individual, either mutation or crossover is performed
each time, but not both. This is different from other variants like genetic algorithms.
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The main distinctive feature of GP, when compared to other evolutionary
algorithms, is that in GP, nonlinear and complex data structures are used to
represent solutions (individuals). For instance, the most common representa-
tions for individuals in GP are trees and graphs, whereas for most of evolu-
tionary algorithms, numerical vectors are used. This feature of GP makes it
appropriate for facing very complex problems, in most cases related to mod-
eling tasks. This is one of the reasons for which we adopted GP for learning
weighting schemes. Nevertheless, the main motivation for using GP for our
problem is that we are interested in learning a function that tell us how to
combine the different primitives (including the decision of telling which prim-
itives are worth to combine). In this scenario, GP provides a natural solution
to the problem, encoding candidate functions as individuals (i.e., trees) and
searching for the best one. Clearly, this problem cannot be approached with
either traditional optimization or heuristic optimization techniques.

4.2 GP for term-weighting scheme learning

Our approach to generate weighting schemes uses genetic programming to
learn how to combine a set of primitives that have been used for building
weighting schemes in the past (see Figure 1). That is, we devise a genetic
program that searches for the combination of primitives that maximizes the
classification performance of the task under analysis (e.g., image classifica-
tion). A standard tree representation is adopted in which leafs correspond to
primitives and non-terminal nodes correspond to operators by which primi-
tives can be combined; in such a way that the evaluation of a tree leads to a
term-weighting scheme (see Figure 3).

Fig. 3 Adopted representation for individuals. Dashed nodes represent operators (taken
from the function set) and solid-line nodes indicate terminals; below the tree we show the
term-weighting scheme derived from it.

Therefore, under this formulation, we explore the search space of weighting
schemes that can be coded by the trees, where, common/alternative weight-
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ing schemes are included in the search space. The remainder of the section
elaborates on the different components of the proposed genetic program.

4.2.1 Representation

As mentioned in Section 3, weighting schemes are mainly composed out of
two type of factors: TDR an TR weights, which determine the importance
of terms into documents and the relevance of terms themselves, respectively.
Accordingly, the proposed method uses as terminals TDR and TR primitives
(together with useful constants and other weighting schemes), which can be
combined by a predefined set of operators. An individual (i.e., solution) in the
genetic program is thus a tree formed by these terminals and operators, where
the evaluation of the tree leads to a term-weighting scheme. Figure 3 depicts
a typical individual and the resultant weighting scheme.

The set of terminals considered in this work is shown in Table 2, whereas for
the operators (non-terminals) we considered the function set shown in Table 3.

Each terminal in Table 2 is a matrix of size N × |V |. TDRs are themselves
matrices of that dimensions, but TRs are row vectors of length |V | (i.e., they
indicate the relevance of each term). To make all matrices comparable (and
henceforth suitable for combination under the function set F), TRs are con-
verted into matrices by repeating the row vector N times. Therefore, all of the
operators in the function set act on a scalar basis, that is, they are applied
element-by-element. It is worth mentioning that for supervised TR factors,
we use information extracted from training images only; i.e., no supervised
information is used from the test set.

The initial population is generated with the ramped half-half strategy,
which means that half of the population is created with the full method (i.e.,
all trees have the same deep, maxdepth) and the other half is created with the
grow method (i.e., trees have deep of at most maxdepth), see [27] for details.

4.2.2 Fitness function

The goal of our genetic programming formulation is to obtain a weighting
scheme that maximizes classification performance. Therefore, the goodness
/ fitness of each solution should be tied to the classification performance of
a model using the representation induced by the weighting scheme. Specifi-
cally, given a solution to the problem, we first evaluate the tree to generate a
weighting scheme using the training set, as shown in Figure 3. Once training
documents are represented by the corresponding weighting scheme, we per-
form a k−fold cross-validation procedure, using a given classifier, to assess the
effectiveness of the solution. In k−fold cross validation, the training set is split
into k disjoint subsets, and k rounds of training and testing are performed;
in each round k − 1 subsets are used as training set and 1 subset is used for
testing, the process is repeated k times using a different subset for testing each
time. The average classification performance is used as the fitness function.
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Table 2 Terminal set.

Variable Meaning
W1 N , Constant matrix, number of training documents.
W2 ‖V ‖, Constant matrix, number of terms.
W3 CHI, Matrix containing in each row the vector of χ2 weights for the

terms.
W4 IG, Matrix containing in each row the vector of information gain weights

for the terms.
W5 TF − IDF , Matrix with the TF-IDF term-weighting scheme.
W6 TF , Matrix containing the TF term-weighting scheme.
W7 FGT , Matrix containing in each row the global term-frequency for all

terms.
W8 TP , Matrix containing in each row the vector of true positives for all

terms.
W9 FP , Matrix containing in each row the vector of false positives.
W10 TN , Matrix containing in each row the vector of true negatives.
W11 FN , Matrix containing in each row the vector of false negatives.
W12 Accuracy, Matrix where each row contains the accuracy obtained when

using the term as classifier.
W13 Accuracy Balance, Matrix containing the AC Balance each (term, class).
W14 Bi-normal separation, BNS, An array that contains the value for each

BNS per (term, class).
W15 DFreq, Document frequency matrix containing the value for each (term,

class).
W16 FMeasure, F-Measure matrix containing the value for each (term, class).
W17 OddsRatio, An array containing the OddsRatio term-weighting.
W18 Power, Matrix containing the Power value for each (term, class).
W19 ProbabilityRatio, Matrix containing the ProbabilityRatio each (term,

class).
W20 Max Term, Matrix containing the vector with the highest repetition for

each term.
W21 RF , Matrix containing the RF vector.
W22 TF ×RF , Matrix containing TF ×RF .

Table 3 Considered function set for the genetic program.

Operator Name Arity
+ Addition 2
− Substraction 2
∗ Product 2
/ Division (protected) 2

log2 x Logarithm b-2 1√
x Square root 1

x2 Square power 1

In particular, we evaluate the performance of classification models with the
f1 measure. Let TP , FP and FN to denote the true positives, false positives
and false negative rates for a particular class, precision (Prec) is defined as

TP
TP+FP and recall (Rec) as TP

TP+FN . f1-measure is simply the harmonic average

between precision and recall: f1 = 2×Prec×Rec
Prec+Rec . The average across classes is



Evolving visual-word weighting schemes 11

reported (also called, macro-average f1), this way of estimating the f1-measure
is known to be particularly useful when tackling unbalanced data sets.

Because under the fitness function k models have to be trained and tested
for the evaluation of a single solution, we need to look for an efficient classifica-
tion model. We considered Support Vector Machines (SVM) as they can deal
naturally with the sparseness and high dimensionality of data. However, train-
ing and testing an SVM can be a time consuming process. Therefore, we opted
for efficient implementations of SVMs that have been proposed recently [51,
10]. Those methods are trained online and under the scheme of learning with a
budget. We use the predictions of an SVM as the fitness function for learning
term-weighting schemes (TWS). Among the methods available in [10] we used
the low-rank linearized SVM (LLSMV) [51]. LLSVM is a linearized version of
non-linear SVMs, which can be trained efficiently with the so called block min-
imization framework [4]. We selected LLSVM instead of alternative methods
because this method has outperformed several other efficient implementations
of SVMs (see [10,51]). Thus, we use this approximated SVM during the fitness
function. Once a weighting scheme has been learnt, however, we use a deter-
ministic SVM to classify the test set. This is to make results comparable and
discard the randomness inherent to the approximate solutions.

4.2.3 Genetic operators

The proposed genetic program follows a standard procedure as depicted in
Figure 2. We use the implementation from [41], which considers standard op-
erators for crossover and mutation. Specifically, subtree crossover is consid-
ered where, given two parent trees, an intermediate node is randomly selected
within each tree. Then, the subtrees below the selected nodes are interchanged
between the parents, giving rise to two offspring. The mutation operator is
quite standard as well, it consists of identifying a node within the parent tree
and replacing the node with another randomly selected (terminals replaced by
terminals and non-terminals replaced by operators in F).

4.3 Final remarks

After the evolutionary process finishes, the genetic program returns a term-
weighting scheme. Next, training and test images are represented according
to this scheme. A classifier is learnt using the training representation and
its performance evaluated in the test representation. For this evaluation we
consider a deterministic SVM (from the CLOP toolbox [37]), hence, results
are comparable to each other. The next section reports experimental results
on several computer vision tasks obtained with learned weighting schemes.
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5 Experiments and results

This section presents experimental results that aim at showing the effectiveness
of the proposed methodology for learning term-weighting schemes in a variety
of computer vision tasks. First we describe the experimental settings and then
report results of our study.

5.1 Experimental settings

For experimentation we considered standard data sets associated to landmark
computer vision tasks. The considered data sets are described in Table 4. All
of these data sets are associated to classification/recognition tasks, hence the
same evaluation protocol (with slight variations described below for each data
set) was adopted. For all but one data set we generated training and test
partitions4; the exception was the MSRDaily3D data set for which we report
average performance over 5-fold cross validation, see below.

In every data set, the training partition was used both to obtain the vi-
sual vocabulary and to learn the term-weighting schemes with the genetic
program, recall the program maximizes the f1 measure under k−fold cross
validation. For evaluating the performance of the different weighting schemes,
both, training and test images are represented with the schemes (either learned
or predefined). Then, a classification model is learned using training images
and the performance of the model is evaluated in test images.

Unless otherwise stated, we used the VLFEAT toolbox for processing im-
ages [45]. We considered PHOW5 (Pyramid Histogram Of Visual Words) fea-
tures as visual descriptors [3].

Regarding our proposed genetic program for term-weighting learning, the
average and standard deviation performance of 5 runs is reported. The method
was run in all cases for 50 generations with a population of 500 individuals.
This is a very standard choice for GP [27], where it is common to use large
number of individuals and a small number of generations. Default values were
used for the remainder of GP parameters: generational selection mechanism
with elitism, lexictour parent selection [33], crossover probability of 0.9, and
mutation probability of 0.1.

Because the optimization process may be too time consuming for some
data sets, we learned the weighting schemes by using subsets of the original
training sets:

– Only samples belonging to a subset of classes were used. In some cases, the
vocabulary was also reduced, see Table 4 column 6.

– The selection of classes was done randomly; while the vocabulary reduction
used a frequency criterion (the most frequent terms were retained).

4 Matlab files with the predefined partitions are publicly available under request.
5 PHOW is an extension to the raw BoVW formulation that aims at incorporating spatial

information by means of a pyramidal structure, see [3] for details.
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Table 4 Data sets considered for experimentation. Column 6 shows the number of images
| terms (i.e., size of the visual vocabulary) considered during the search process.

Image Categorization
Data set Classes |V| # Train # Test images|terms

Caltech-tiny 5 12000 75 75 15|12000
Caltech-102 (15) 101 12000 1530 1530 165|3000
Caltech-102 (30) 101 12000 3060 3060 330|3000

Birds 6 400 540 60 540|400
Butterflies 7 400 552 67 552|400

Action recognition
Data set Classes |V| # Train # Test im.|terms

MSRDaily3D 12 600 192 48 192|600
Gesture recognition

Data set Classes |V| # Train # Test im.|terms
Montalbano 20 1000 6850 3579 2055|600

Scene recognition
Data set Classes |V| # Train # Test im.|terms
15 Scenes 101 12000 1475 3010 1475|2000

Pornographic image filtering
Data set Classes |V| # Train # Test im.|terms

Adult 101 12000 6808 1702 6808|2000

Despite this reductions, at the end of the search process, all of the data
and classes are considered for training the final classifier and evaluation. We
emphasize that during the search process we use an approximate SVM for
computing the fitness function. When evaluating the performance of weighting
schemes in test set we used a deterministic linear SVM. Specific details and
considerations for each data set are reported below.

Finally, for comparing the statistical-significance of differences we used a
Wilcoxon signed-rank test (as recommended in [8]), with a 0.05 confidence
level.

5.1.1 Caltech-101

Caltech-101 [16] is a mandatory benchmark for image classification. It contains
objects that belong to 101 different categories (102 including the background
category). Sample images from this data set are provided in Figure 4.

Fig. 4 Sample images from the Caltech-101 data set.

For experiments we considered three subsets: tiny, 101-15 and 101-30. Tiny
considers 5 out 102 classes with 15 images per-class for training and 15 for test-
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ing; data set 101-15 considers the 102 classes with 15 training and 15 testing
images (per-class); finally, data set 101-30 considers the 102 classes with 30
images for training and 30 for testing. Using 3 subsets of Caltech-101 allows
us to evaluate the performance of our method for similar categorization prob-
lems but with different complexities in terms of the number of categories and
samples. In fact, we use these subsets of Caltech-101 to assess the generality
capabilities of the proposed approach, see below. For tiny we used all of the
samples during the optimization process, whereas for the other two data sets
we used examples from 10 category-classes and the background only, where
the top 3000 terms where considered.

5.1.2 Birds and butterflies

We also considered two data sets related to animal recognition: birds and but-
terflies. Figure 5 shows sample images from these data sets. In both cases, the
problem is to distinguish birds/butterflies species. Contrary to Caltech-101,
these data sets comprise more fine-grained classification problems. Therefore,
these data sets comprise a major challenge because instances of different classes
may be very similar. For these data sets we represented images under the BoW
using a Discrete Cosine Transform (DCT) descriptor. This choice is based on
previous work in the same data sets [32]. For both data sets, we used 90 percent
of images for training and 10 percent of images for testing.

Fig. 5 Sample images from different categories of the Birds and Butterflies data sets.

5.1.3 Adult image filtering

A data set for adult image filtering was considered as well. The data was made
available by [9], and it has been previously used in several publications, see [9,
49]. The data set contains images belonging to five categories, where there is
one category for inoffensive images and four categories of increasing level of
adultness: lightly dressed, partly nude, nude and pornographic, see Figure 6.

The goal in this task is to associate images with its correct category in
such a way that the administrator of a filtering system can decide the level
of restriction in the type of images users can have access to (e.g., photos of
lightly dressed persons may be allowed in most sites, even in schools, but nude-
persons and pornography may be objectionable in most sites). About 80% of
images were used as training set and the remainder as test set, as in [9].
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Fig. 6 Sample images from the data set of adult image filtering. The categories are (from
left to right): inoffensive images, lightly dressed persons, partly nude persons, nude persons,
and pornographic images (not shown).

5.1.4 Scene recognition

We consider a benchmark data set for scene recognition [30]. The data set
comprises 15 indoor/outdoor categories, where images contain complex scenes.
Figure 7 shows sample images from this data set, clearly this is a very chal-
lenging task. For this data set we used the same partitioning proposed in [30]:
100 images per category for training and the rest for testing.

Fig. 7 Sample images from the 15-Scenes data set. Categories are from left to right and
from up to bottom: bedrom, suburb, industrial, kitchen, living-room, coast, forest, highway,
inside-city, mountain, open-country, street, tall-building, office, and store.

5.1.5 Montalbano

The BoVW has been used to represent videos as well, see e.g., [42,28,22].
For this reason we also decided to include video data sets. Specifically, we
considered the Montalbano data set for gesture recognition as provided in [15].
The task consists of recognizing gestures from 20 categories (Italian cultural
gestures), see Figure 8. The available data is depth and RGB video together
with skeleton information. For our experiments we used the features proposed
in [36], which combine depth, RGB video and skeleton information by means
of convolutional nets and other deep learning mechanisms. The deep-learning
features were clustered and the vocabulary was built. One should note that we
approach the gesture recognition problem, that is, given a segmented gesture,
to tell the class of the gesture being performed.

5.1.6 MSRDaily3D

Finally, we considered a benchmark data set for action recognition: MSR-
Daily3D. This data set comprises 16 actions associated to daily activities,
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Fig. 8 Sample images from the Montalbano data set. Images from each of the gesture
categories are shown [15].

where there are objects in the background and most actions involve human-
object interaction. A sample sequence from this data set is shown in Figure 9.
For this data set we adopted the protocol from [25,24,23,48]. Under this setting
we considered 12 out of the 16 actions and performed 5-fold cross validation.
We adopted this protocol because it has been adopted in recent work that uses
the BoW representation [25,24,23,48], therefore we can compare the perfor-
mance of our method with such works. Video sequences were represented with
Depth Cuboid Similarity Features (DCSF) and the same parameters for the
descriptor as in previous work were used. Descriptors were further processed
to represent videos with their bag of features representation.

5.2 Experimental results

Table 5 shows the results obtained by the different weighting schemes (tradi-
tional, alternative-supervised and learned) in all of the considered data sets.
We report average f1−measure performance in the test-partitions. The ? sym-
bol indicates a statistically significant difference between our approach and
the method from the corresponding columns.

It can be seen from this table that, in average, the Boolean weighting
scheme (column 3) outperforms both, traditional and alternative, term-weighting
schemes. This is an interesting result, because, most of the times (normalized)
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Fig. 9 Sample sequence from the MSRDaily3D dataset [47].

TF or TF-IDF weighting schemes are considered in computer vision tasks.
Please note that although the Boolean scheme is the best on average, it is
clear from Table 5 that there is no single best weighting scheme for all of the
data sets.

Regarding alternative-supervised term-weighting schemes, only TF − RF
obtained comparable performance to the TF scheme, however its performance
was lower than the Boolean scheme. The other two supervised schemes per-
formed worse than the baseline. These results are somewhat disappointing,
because, intuitively, the incorporation of discriminative information should
yield better performance. In spite of these results, our study comparing tra-
ditional and alternative weighting schemes is a contribution that brings some
light on the performance of such schemes for diverse computer vision tasks.
More importantly, we showed the adequacy of the Boolean scheme.

On the other hand, it is clear from Table 5 that the proposed approach
for learning visual-word weighting schemes outperforms all the other variants
in all of the considered data sets (see column 8, recall for our method we are
reporting the average of 5 runs, that is why we report average and standard
deviation of performance). For most of the data sets, our GP-based solution
improves considerably the performance of all of the other weighting schemes,
in fact, the differences in performance between our method and the rest are
statistically significant. The average improvement of our genetic program over
the Boolean scheme was of around 5%, we think this improvement makes worth
applying our method instead of relying on standard weighting schemes. These
results show that, if searched properly, weighting schemes that maximize clas-
sification performance may result in improved performance; this is in contrast
to using discriminative information by using IG, CHI, etc.

Higher improvements were observed for image categorization and adult-
image filtering data sets. Whereas marginal improvements were observed for
Montalbano and MSRDaily, although results reported for these datasets are
quite competitive with the state of the art, see e.g., [15,48,25]. The latter
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behavior can be due to the fact that the descriptors used for these data sets
are very discriminative as reported in [36,15,48]. In those cases it may be
enough to verify the presence / absence of such discriminative patterns. This
is not the case of image categorization data sets for which standard descriptors
were used.

In addition to the competitive average performance, it is quite interesting
that the standard deviation across runs is relatively low when compared to the
other methods. Thus evidencing the stability and robustness of the proposed
method.

In order to better appreciate the improvements offered by our method,
Figure 10 shows the range of improvement of our method over the best tra-
ditional/alternative weighting scheme per data set in terms of absolute and
relative differences. That is, we plot the difference in performance between our
method (column 8) and the best result among columns 2-7 for each particular
data set. This means that our method is not compared with the best scheme
in average, but with the best overall for each data set, a somewhat unfair
comparison for our approach.

Fig. 10 Absolute (blue-first bar) and relative (red-right bar) improvement for the different
data sets, taking as reference the best traditional/alternative weighting scheme for each data
set.

From Figure 10 it can be seen that the GP-based method offers considerable
improvements for all but for the Montalbano data set. The difficulty of this
task may require running the genetic programm using the whole number of
classes/samples (for this data set we used only a third of the total of instances,
see column 6 in Table 4). Although, as mentioned above, we think this low
improvement is due to the very effective visual descriptors over which the BoW
representation was generated.
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One should note that the proposed method relies on an iterative optimiza-
tion process that is somewhat computational expensive. In particular, the
adopted representation (tree-based structure), the fact that the terminals are
associated to matrices and the estimation of the fitness function6 (training and
testing an SVM classifier under a cross validation) are the main factors that
contribute to the computational expensiveness of our model. Nevertheless, in
practice, the average running time of the proposed method takes of the order
of a few hours. Thus, although the proposed method is somewhat computa-
tional expensive, the average running time is acceptable for most computer
vision applications. Please note that the process of learning weighting schemes
is a procedure that is performed offline, and has to be done a single time.
Therefore, we think it is worthwhile spending a few hours using our method,
given the potential improvement in performance that can be obtained. On
the other hand, one may argue that alternative weighting schemes are less
complex (and henceforth require of less processing time to generate the rep-
resentation). We think this time is negligible, because it involves only a few
additional arithmetic operations over more matrices (which are also computed
a single time).

5.3 Qualitative analysis

This section presents a qualitative study on the proposed method for learning
term-weighting schemes. Table 6 shows sample schemes learned for selected
data sets. It can be seen that all of the learned schemes included primitives
that capture from supervised information. Thus, showing the importance of
such supervised components. Therefore, we can say that the proposed method
effectively learns to combine supervised building blocks that result in competi-
tive weighting schemes. This is in contrast with alternative-supervised schemes
that showed limited performance (see Table 5).

From Table 6 it can be seen that the learned weighting schemes are in-
deed simple expressions (opposed to standard GP solutions that include very
complex trees). This is a desirable property that suggests overfitting is not an
issue for the proposed method.

Finally, it is interesting to note that very different weighting schemes were
obtained for the different data sets, thus giving evidence that a tailored weight-
ing scheme is required for each task.

Figure 11 shows the frequency of use of each of the terminals from Table 2
in the solutions returned by the genetic program for all of the data sets (i.e.,
a bar in Figure 11 corresponds to a row in Table 2). It can be seen that
three most used terminals are W6, W22 and W5, which correspond to TF ,

6 Please note that estimating the fitness function is quite efficient, as it is based on a
fast approximation to a linear SVM. So this method can be used for most computer vision
applications. Also, we emphasize that the fitness function is only estimated during the
learning process, which has to be done a single time and most of the times is performed
offline.
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Table 6 Sample weighting schemes learned with the proposed approach for selected data
sets. In column 2 each weighting is shown as a prefix expression. The names of the variables
are self-explanatory. Column 3 shows the mathematical expression of each TWS using the
terminal set from Table 2.

ID Data set Learned TWS Formula

1 Caltech101-15 sqrt((sqrt(RF× TF)+log 2(RF× TF)))

√√
W22 + log 2(W22)

2 Birds log 2((FMeas × (CHI × log 2(TF × RF)))) log 2(W16 × (W3 × log 2(W22))

3 MSRDaily3D ((TF × FN) × sqrt(T)) ((W6 ×W11) × log 2(

√
W22))

4 Adult (sqrt(IDF)×D) (

√
W5 ×D)

5 Montalbano log 2(log 2(CHI))× sqrt(IDF) (log 2(log 2(W3)) ×
√

W5)

6 15-Scenes log 2((ProbR + TF × RF)) log 2(W19 +W22)

TF × RF and TF − IDF weighting schemes. This is interesting because,
even when these were the most chosen terminals by solutions returned with
the genetic program, such terminals were significantly outperformed by our
proposal: compare columns 2, 4 and 5 to column 8 in Table 5.

Fig. 11 Frequency of appearance of terminals into the solutions found by the genetic pro-
gram, see Table 2 for terminals description.

Only 6 out of the 22 terminals did not appear in solutions returned by
the genetic program. All of these terminals (W9,10,12,14,15,20) corresponding
to TR weights, mainly used for feature selection in text classification [17].
Although they have proved to be very effective in [17] (terminal W14 was the
best criterion for feature selection in that study), they were not very helpful
for building term-weighting schemes for computer vision tasks.
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6 Conclusions

The BoVW is one of the most used representations in computer vision tasks.
Despite being very effective, it is somewhat surprising that little research has
been performed on term-weighting schemes for computer vision. In this direc-
tion, this paper introduced a novel methodology for learning weighting schemes
to boost the performance of classification models relying on the BoVW. The
proposed methodology resulted very effective in a wide variety of computer
vision tasks. Additionally, we report an in-depth study on the performance of
standard and alternative weighting schemes commonly used in text mining.
To the best of our knowledge, our work is the first that assesses alternative
weighting schemes, and it is the first in proposing methods to learn weighting
schemes for computer vision tasks. From our extensive experimental study,
comprising 9 data sets of common computer vision task we can conclude the
following:

– Among traditional and alternative weighting schemes, the Boolean one
obtained the highest performance.

– Weighting schemes learned with our proposed approach outperformed con-
sistently all other weighting schemes in all of the data sets.

– For different tasks, learning a term-weighting scheme with the proposed
approach is much better than applying other schemes (either traditional /
alternative or learned for another data set).

– Computer vision tasks that are not too generic (e.g., gesture recognition
or adult image filtering) require of tailored weighting schemes, accordingly,
schemes learned for this data sets do not generalize well in other data sets.

– Among all of the considered terminals, three weighting schemes were used
most often by solutions returned by the genetic program (TF, TF-IDF and
TF-RF), however, the way in which the genetic program combined such
primitives resulted in much better performance.

Future work includes studying alternative methodologies for learning term-
weighting schemes. Specifically, we plan to pose the problem as one of learn-
ing/optimizing the representation matrix, where other evolutionary algorithms
could be used. Also, we are interested on learning term-weighting schemes for
other domains, like audio [34], time series [46] or accelerometer data [19], and
other scenarios as one-shot recognition [21] and early classification [14].
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