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« Dual-Stream CNN learns both appearance and facial features in tandem from still images and infers person IDs.

 We leverage an alternative lightweight ID-CondenseNet architecture that infegrates a face-guided DC-GAN to
generate distractor person images for enhanced training.

« Both architectures are tested on FLIMA, a new extension of an existing person Re-ID dataset with added frame-
by-frame annotations of face presence. We outperform the largest existing Re-ID dataset, MSMT17/.

- Visual Person Re-ID links people across disjoint views.
- Challenging sub-domain in Computer Vision:

o Inherent viewpoint and illumination changes, partial
occlusions, limitations on resolution, significant appearance
alterations (e.g. changes in clothing).

o Unimodal approaches, such as face recognition systems, are
on their own inadequate.

o Computational demand for network inference.

- Methods evaluated on novel released datasets.

Dual-Stream Baseline
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GAN and DC-GAN adversarial loss: ENHANCED
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A, A, are penalisation factors.

A (1) = 1 when there is no face detectable;
A (-) = 0 otherwise.

verson re-identification baseline in vi
eNet using Learned Group Con
anvolutional Generative Adve

S. He ntically Selective Aug
/ or Person Re-identifi

Jia Rabinovich. @
/ glable Pe

FACIAL Long-term Identity-aware Multi-target multi-camerA

Multiple IDs, Criteria for examples of
resolution, challenging face annotations
. scales, clothes
" changing,
points of

view...

= Manually
\T annotated
faces

-

Criterion for an example of two
faces in the same bounding box

» 188,427 total frames
Split into 13 sessions

High-quality real
images for 3
random identities

DC-GAN DC-GAN

Table 1. Recognition performance on FLIMA

Method # Test Images |Precision|Recall|F1-score

RCNN and RBF-SVM-Eigenface (Faces only) 4,531 0.56 0.52 0.47
Selective Augmentation Approach [19] 14,494 0.75 0.74 0.74
Our Guided DC-GAN trained CondenseNet, 14,494 0.85 0.85 0.85
Our Appearance-Stream only 14,494 0.92 0.81 0.86

Our Full Dual-Stream 14,494 0.93 0.90 0.91
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Considerably increased performance for Recall with the
Dual-Stream architecture. 55 | f
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Table 2. Person Re-ID performance on MSMT17 dataset for single queries.

Showing samples of global distractors for different

Method Rank@1 mAP values of L L. > 0
Dual-Stream Architecture 4.89 5.91 b2 '
GoogleNet [25] 47.6 23.0
PDC [24] 8.0 | 29.7 DC-GAN Training on all identity samples are used
GLAD [31] 614 |34.0 for the generation of distractors.
Selective Augmentation Approach [19] 61.5 |[15.01 ]
Our Guided DC-GAN (A1, A2 = 0.05,0.025) trained CondenseNet| 63.85 |16.64 :
Our Guided DC-GAN (A1, A2 = 0.05,0) trained CondenseNet 65.51 |18.57

Note improvements when activating the guidance. //
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« Potential approaches for person Re-ID are based on the
exploitation of facial and person appearance representafions.
 Guided DC-GAN infegrates the face detector, leveraged from

the face stream of our Dual-Stream CNN architecture. It Is used
fo generate person images for enhanced fraining.
* Distractor augmentation and network compression have a role
to play for larger scale applications.
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