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ABSTRACT
The exploitation of cellular network data for studying hu-
man mobility has been a popular research topic in the last
decade. Indeed, mobile terminals could be considered ubiq-
uitous sensors that allow the observation of human move-
ments on large scale without the need of relying on non-
scalable techniques, such as surveys, or dedicated and ex-
pensive monitoring infrastructures. In particular, Call De-
tail Records (CDRs), collected by operators for billing pur-
poses, have been extensively employed due to their rather
large availability, compared to other types of cellular data
(e.g., signaling). Despite the interest aroused around this
topic, the research community has generally agreed about
the scarcity of information provided by CDRs: the position
of mobile terminals is logged when some kind of activity
(calls, SMS, data connections) occurs, which translates in a
picture of mobility somehow biased by the activity degree
of users. By studying two datasets collected by a Nation-
wide operator in 2014 and 2016, we show that the situation
has drastically changed in terms of data volume and quality.
The increase of flat data plans and the higher penetration of
“always connected” terminals have driven up the number
of recorded CDRs, providing higher temporal accuracy for
users’ locations. Ultimately, we demonstrate that CDRs are
nowadays suitable for fine grained mobility studies.

1. INTRODUCTION
According to a projection by GSMA, 70% of peo-

ple worldwide will be mobile subscribers by the end of
2017, reaching almost 85% in developed countries [1].
Another interesting figure [2] states that half of mobile
customers own Internet-capable mobile devices and the
largest majority of people access the Internet through
cellular networks [3]. The increasing penetration of mo-
bile terminals is not new: the rising trend started two
decades ago. With these figures, it is not a surprise
that both network operators and the research commu-
nity look at mobile technologies as an unprecedented
information source. Every terminal produces an enor-
mous amount of meta-data that can be exploited to
study aggregated behaviors and trends.

Current systems for observing human mobility gather
information from dedicated infrastructures (i.e., sensors
deployed in key areas), which would be too expensive
to deploy at scale. Another typical source consists in
surveys, which suffers of lack of scalability and error
proneness. Mobile devices and cellular networks can
help overcoming these limitations: the high number of
terminals can be opportunistically exploited as existing
sensors, without the need of dedicated hardware.

In this paper, we discuss about the quality of mobil-
ity information provided by a type of cellular meta-data
known as Call Detail Record (CDR). A CDR is a sum-
mary ticket of a telephone transaction, including the
type of activity (voice call, SMS, data), the user(s) in-
volved, a time-stamp, technical details such as routing
information, and the identifier of the cell offering con-
nectivity to the hand-terminal. The latter is especially
interesting as it allows to localize the associated action
within the boundaries of the cell’s coverage area.

CDRs might not be as rich as other cellular data
(e.g., hand-overs), but they have been a popular study
subject since the 2000s. The reason behind this inter-
est should be sought in their high availability, as net-
work operators are collecting these logs for billing which
makes them a ready-made data source. Indeed, there
is a fairly rich literature on the their exploitation for a
plethora of applications, ranging from road congestion
detection and public transport optimization to demo-
graphic studies. Despite the initial interest, the research
community gradually abandoned this data source as it
has become clear that the location details conveyed by
CDRs were biased by the users’ activity degree. In other
words, we can observe the position of a user in conjunc-
tion with an activity, which translates in the impossi-
bility of locating a user with fine temporal granularity.

The goal of this work is to study of where we are at
with CDRs. We argue that the spreading of flat rates for
voice and data traffic encourages users to generate more
actions. In particular, competitive data plans are nowa-
days characterized by very high data volume limits, let-
ting customers keep their terminals always connected.
The popularity of instant messaging and social network
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applications with background sync behavior completes
the picture of today’s typical smartphone usage. Having
said this, we observed a drastic change in CDR datasets
over the last years. In support of this argument, we an-
alyze two anonymized datasets collected in 2014 and
2016 from a major operator. Our goal is to show that
a significant share of users are characterized by a high
frequency of actions, accountable, mostly, to data con-
nections. Our first dataset (2014) has been successfully
employed in commercial mobility studies (briefly men-
tioned in this paper). In the course of our work, we have
witnessed a remarked rise of action rate, which gives
good perspectives for the future. We believe that the
lessons learned from our operational experience could
be of interest for operators and data practitioners.

Our contributions are manifold: (i) we conduct a lon-
gitudinal study showing how CDR datasets improved
over a 2-year period; (ii) we define a set of indicators
apt to measure the quality of CDR datasets in terms
of number, frequency and uniformity of distribution of
actions over time; (iii) we give indications on how to
select high quality user samples; (iv) finally we present
some sample results on the inference of urban mobility.

The remainder of this paper is organized as follows.
In Section 2 we present the state of the art. In Section 3
we introduce the two datasets under study. In Section 4
we propose some metrics to estimate the activity degree
of users. Section 5 is devoted to the description of some
use cases. We draw our final conclusions in Section 6.

2. STATE OF THE ART
The use of mobile terminals and cellular networks

as source of mobility information has drawn the re-
search community’s attention in the last decade. In gen-
eral, one can distinguish between terminal-based and
network-based mobility monitoring approaches. The
former consists in smartphone applications that report
GPS (Global Positioning System) positions, and option-
ally other details from the radio interface, to a central
server [4–7]. In [5], for example, GPS is used as part of a
cloud-based system to gradually learn user’s driving be-
havior and hence predict the future traffic conditions.
The same approach is adopted by consumer applica-
tions, such as Waze1, that rely on a large user base to
collect road statistics and offer traffic-aware navigation.

GPS data is extremely valuable to study mobility
with high accuracy in positioning and speed estima-
tion. However, it requires the deployment of dedicated
monitoring applications, resulting in smaller datasets
than those collected with network-based approaches.
Network-based monitoring approaches, conversely, are
based on the collection of data from the network itself,
i.e., they do not require modifications to the terminals.

Most of previous studies based on network-based ap-

1Waze homepage - http://www.waze.com

ds2014 ds2016

Length 31 days (Q3-2014) 31 days (Q2-2016)
# of records / day 350M 1.1B
# of users / day 9M 11M (inc. roamers)
Data volume / day 50GB 120GB

Table 1: Summary of the two CDR datasets.

proaches make use of Call Detail Records (CDRs) [8–
10]. CDRs are tickets to support operators’ billing pro-
cedure, summarizing a transaction (such as a call, text
message or data connection). They include meta-data
such as the time-stamp and cell identifier (useful for in-
ferring the terminal’s location in the context of the radio
access network’s topology). Since CDR datasets only
log the position of users when an action occurs, their
exploitation for the characterization of human mobility
has been criticized [11]. In [10], authors highlight some
concerns in this direction and also show that users are
in-active most of the time. The main limitation lies in
the fact that the mobility perceived from the observa-
tion of CDRs is highly biased, as it strictly depends on
the specific terminals’ action patterns. In other words,
users are visible during few punctual instants over the
entire day, making us miss most of their movements.

We argue that the situation is drastically changed
and nowadays CDRs are much richer than the past,
due to the increasing usage of data connections and
background applications that has increased the num-
ber of records. The number and frequency of tickets is
now sufficiently large to allow a fine tracking of users’
positions. Some recent mobility studies, such as [12],
are successfully based on CDRs. We expect a resur-
gence of research work tackling the study of CDRs in
the next years. Indeed, the research community is al-
ready targeting some open issues, such as the lack of
CDR standardization across operators [13].

In addition to CDRs, there are other sophisticated
monitoring approaches that rely on the capture of the
signaling between terminals and the network (including
hand-overs and location area updates) in a passive fash-
ion [14]. In our previous work published in 2012 [15],
we have studied the differences between CDRs and sig-
naling data in terms of number of actions per user. De-
pending on the monitored interfaces, these approaches
greatly vary in terms of cost and data quality [16]. Al-
though the analysis of signaling is promising, there is a
general lack of studies based on actual operational sig-
naling data (some exceptions are [15, 17]), as complex
dedicated monitoring infrastructures for the extraction
and immense data storage systems are required.

3. DATASETS DESCRIPTION
The ultimate goal of this work it to define a set of

quality indicators for CDR datasets and evaluate the
applicability of this data type for the inference of human
mobility patterns. To this end, we use two anonymized
CDR datasets collected in a Nation-wide network with
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Figure 1: Fraction of users per type of actions. Data

connection customer share grows from 50% to 85%.

ds2014 ds2016 ∆
SMS (snt.+rcv.) / day 0.5 0.1 −0.4
calls (inst.+rcv.) / day 1.8 2.5 +0.7
data conn. records / day 10.9 50.1 +36.9
total actions / day 13.2 52.7 +39.5

Table 2: Averarage number of daily actions per user by

action type. There is a remarked shift increase of data

connections. SMS records have become marginal.

the collaboration of a major cellular operator. The two
logs cover the activities of all operator’s millions of cus-
tomers in Spain, over two different periods, in the 3rd

quarter of 2014 and 2nd quarter of 2016 (named ds2014

and ds2016 from now on). The time-span covered by
the two datasets allows the observation of the mid-term
evolution, in particular for what concerns the number
of actions recorded per user per unit of time.

Tab.1 summarizes the characteristics of the datasets.
Given the considerable amount of data, it has been nec-
essary to adopt suitable technologies for the storage
and the analysis. In particular, our set-up consisted
in a cluster of 6 nodes (5 workers and 1 master node),
with a total HDFS (Hadoop Distributed File System)
storage of 10TB. We adopted a mix of different big
data tools, such as Apache Sqoop for transferring data,
Apache HIVE for the phase of data cleaning and pre-
processing and Spark for the analytics. Our main objec-
tive consisted in inferring urban mobility in the city of
Barcelona, Spain, producing origin-destination matri-
ces, geographical clustering of densely visited areas and
studies of urban trajectory at district level. Despite
the limited geographical area of interest, we considered
the whole datasets (i.e., whole Spain), in order to ob-
serve the origin area of visitors and the main city’s entry
points. We present few sample results in Section 5.

Before studying the datasets, it is worth discussing
about the type of actions recorded in the CDRs. Each
time a user executes an action – e.g., start/answer a
call, send/receive a text message (SMS), start a data
connection, etc. – the meta-data associated with the
telephone transactions are recorded by the operator for
billing purposes, independently from the user’s tariff
plan. The records are accompanied by technical de-
tails, such as the routing information, not considered in
this work. Finally, CDRs include the identifier of the
cell to whom the mobile terminal was attached during
the transaction. This field is particularly relevant for
studying the mobility of users, because it reveals an es-
timation of the geographical position of the hand-held.

As a matter of fact, CDRs do not generally include
signal strength or other radio details that let triangu-
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Figure 2: Distribution of daily action count per user

in ds2014 and ds2016, separating per type of action.

late the terminal with high precision, therefore the es-
timated position corresponds to the antenna location.
The position accuracy depends on the network planning
and the coverage area of the cell (ranging from 50 meters
for pico-cells, up to several kilometers for macro-cells).

Let us now characterize the datasets. Apart from
the difference in the absolute number of customers, the
largest substantial change from ds2014 to ds2016 is the
action rate per user (cfr. Tab. 1). This is mainly due to
a much higher fraction of data connection users. The
penetration of smartphones (and, in general, Internet
access through mobile networks) has increased in this
2 years period, as showed in Fig. 1. In 2014, only 50%
of customers where Internet users. This percentage has
grown up to almost 85% in 2016. As a consequence of
this, the action type share has also changed. Tab. 2
reports the average number of daily actions per user in
ds2014 and ds2016. Over two years, users have reduced
the number of sent and received text messages (SMS),
going from an average of 0.5 messages per day to a
negligible 0.1 (an effect of the on-line instant messaging
systems that replaced the traditional SMS market). For
what concerns calls, we measured an average of 1.8 and
2.5 voice call-related records respectively (the small in-
crease is probably caused by the higher number of flat
rates). The main change is related to data connections:
the number of daily data actions has dramatically in-
creased in ds2016, surging from 10.9 to 50.1. Overall,
the daily action count has grown four times.

The increased share of data connection users, together
with the increment of data-related logged actions, has
driven a remarkable shift of the overall distribution of
daily actions by users (cfr. Fig. 2). The plot depicts
the cumulative distribution function (CDF) of average
daily actions by user in ds2014 and ds2016, discrim-
inating by action type (voice calls and text messages
have been merged for the sake of clarity). The distribu-
tion confirms the previous considerations and suggests
that the newer dataset provides more tickets (and there-
fore geographical information) per user. 50% of users in
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(a) Days of Visibility (DOV)
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(b) Hourly Action Rate (HAR)
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(c) Average Lag Time (ALT)
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(d) Total Inactive Time (TIT)

Figure 3: Distribution of activity degree indicators

among users in ds2014 and ds2016. All indicators favour

ds2016 in terms of users’ activity degree.

2016 executed at least 50 daily actions related to data
connections. Only 10% did the same in 2014.

4. ACTIVITY DEGREE INDICATORS
In the previous Section, we have seen that the av-

erage number of daily action tickets has dramatically
increased from 2014 to 2016, mostly due to the higher
number of flat data plans. This information, however,
is not enough for evaluating the quality of CDRs for
the study of users’ mobility. As showed in [10], users
tend to concentrate the interactions with their termi-
nals in short time spans (e.g., while commuting), which
generates bursts of records. Through CDRs, we have
no information about users’ activities (and hence their
position) while they are idle, which prevents the obser-
vation of their movements (or the absence thereof).

To demonstrate how today’s high penetration of smart-
phones has drastically changed the situation, we pro-
pose a number of activity degree indicators aimed at
measuring not only the amount of records, but also how
uniformly the activities are spread over time. By apply-
ing these indicators, our goal is to count how many users
respect certain “quality standards”, i.e., their activity
degree is sufficiently stable and constant in order to al-
low the observation of movements with fine granularity,
hence reducing the risk of drawing partial or misleading
trajectories. In the remainder of this Section, we briefly
describe the set of indicators and we show how the two
datasets under study compare. These indicators are ap-
plied to each anonymous user in the datasets.

Days of Visibility (DOV). The first indicator con-
sists in counting the number of distinct days in which
users generate activities and therefore reveal their posi-
tion. This indicator does not add much more informa-
tion than simply counting of actions per day, however it
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Figure 4: Distribution of user entropies in ds2014 and

ds2016. The second distribution is much more skewed

towards the right end.

could provide useful insights in case of macro-mobility
studies (e.g., at Nation/Regional level). Fig. 3(a) shows
the distribution of the DOV indicator in terms of frac-
tion of active days in ds2014 (dashed line) and ds2016

(solid line). The curves show a much higher chance of
observing a user for more days in the new dataset (50%
the users are visible every day in ds2016), hence pro-
viding better coarse information of the visited regions).
An important remark should be made about the collec-
tion period: ds2016 was collected over summer, noto-
riously a vacation period. This has two consequences:
(1) people are generally less active (in particular busi-
ness phones are idle for longer periods) and/or on hol-
iday abroad, preventing us from observing their logs;
(2) more international tourists (roaming on operator’s
network) could be active during their visit (e.g., one
week). These considerations reinforce the conclusion
that ds2016 largely dominates in terms of quality.

Hourly Action Rate (HAR). For each user, we
calculate the average number of records per hour. The
more active the user is, the more records we have, which
means that CDRs offer a closer picture of their actual
mobility. As showed in Fig. 3(b), the distribution of
users’ HAR greatly favors ds2016 again. In fact, 50%
of users generate an average of 2 actions per hour or
more. The same percentage of the most active users in
ds2014 were executing a number of hourly actions an
order of magnitude smaller. Note that good values for
this indicator are still not a guarantee of uniformity.

Average Lag Time (ALT). We define as lag time
the interval between a pair of consecutive actions. It fol-
lows from the definition that we seek short average lag
times, i.e., users with an action rate that spans the ob-
served period, independently from the hourly rate. This
indicator is much more powerful than the previous ones,
because it tends to be less biased by burstly activity
patterns. As for the other indicators, the two datasets
largely diverge for what concerns ALT (cfr. Fig. 3(c)).
In particular, more than 80% of users in ds2016 are
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indicator threshold
DOV – Days of Visibility DOV >= 75%
HAR – Hourly Action Rate HAR >= 1
ALT –Average Lag Time ALT <= 30 minutes
TIT – Total Inactive Time TIT <= 75%
H – Entropy 0.7 <= H <= 0.9

Table 3: Thresholds used for urban mobility studies.

characterized by an ALT smaller than 2 hours, while
only 50% respect the same requirement in ds2014.
Total Inactive Time (TIT). This metric is rather

intuitive: it tells how long a user is inactive over the en-
tire observation period. It follows that we seek datasets
in which users have low values for TIT. Fig. 3(d) shows
how ds2014 and ds2016 compare with respect to users’
amount of inactive periods, in terms of fraction of 1-
hour bins over the observation period. The distribu-
tion of the older dataset is concentrated towards high
percentages of TIT, while the one for ds2016 is more
uniform. This indicator is highly influenced by the por-
tion of time of the day under study: if we consider the
entire day (including nights, as we have done for all the
Figs. 3), the TIT is higher. Given that more and more
users tend to keep their smart-phones turned on over
night, it is more likely that the users are still visible
more often (cfr. applications with background data ac-
tivities), which explains the substantial change in 2016.
It should be noted that, depending on the use-case, we
could still be interested in observing actions in inactive
periods such as nights to assess the lack of movements.

Entropy (H). The final indicator is the most com-
plex one and summarizes the others. The entropy is
a measure of the uniformity of an empirical distribu-
tion. Be X a distribution, the entropy is defined as
H(X) = −

∑n
i=1 p(xi)log(p(xi)), where x1, . . . , xn is

the range of values for X, and p(xi) is the probability
that X takes the value xi. The entropy is normalized
to a scaling factor log(n0), where n0 is the number of
distinct xi. For our experiments, we consider X the
distribution of actions of a user over time and p(xi)
the fraction of actions in the 1-hour time-bin xi. It fol-
lows that the extreme case of a user whose all activity is
concentrated in a single bin will give 0 entropy. The op-
posite case of an extremely uniform user (all bins with
the same action count) will produce entropy 1. In the
light of this, high entropy users (closer to 1) are to be
preferred for mobility studies as their activity pattern is
more uniform. Fig. 4 shows that the entropy distribu-
tion among users in ds2014 is normal-like, centered at
0.5, while the distribution for ds2016 is skewed towards
higher values, which confirms quality improvement.

5. RESULTS AND APPLICATIONS
The aforementioned indicators allow the characteri-

zation of users activity degree and, most importantly,
the stability of their activity patterns. We now focus
on the application of these metrics for the extraction of
samples of high quality users, i.e., users whose activity

indic. ds2014 ds2016 indic.. ds2014 ds2016

DOV 96.5% 97.7% TIT 62.7% 43.2%
HAR 2.25 4.98 H 0.75 0.84
ALT 888.9 823.3

Table 4: Average indicator values for the HAU samples.

patterns make them suitable for mobility studies with
restrained bias. To this end we have defined empirically
a set of thresholds for the indicator values, summarized
in Tab. 3. We have applied these conditions in order to
select such a sample, named HAU (Highly Active Users)
from now on. The sizes of the two samples correspond
to 7.5% and 12.5% of users, respectively. The average
values of the indicators for the HAUs are reported in
Tab. 4: beside being larger, the 2016 sample presents
better characteristics (HAR, TIT and H in particular).

One could argue that the sample size is small, how-
ever it should be considered that we have included the
entire day in the calculation of the indicators. As said,
including night hours negatively impacts all indicators
(especially TIT) and it particularly affects ds2014, in
which the fraction of always-on terminal is smaller. Re-
stricting the analysis to diurnal hours (e.g., 08:00am-
10:00pm, which is the most congested period and of in-
terest for the administrations and businesses), we would
drive the sample size up to 25% and 38% respectively.

Our thresholds could serve as guidelines derived from
our operational experience in the study of urban mobil-
ity. The parameters have been tuned in collaboration
with the local authorities taking into account historical
statistics of the area, such as travel times with pub-
lic transportation, area geometry, etc. In particular,
we considered the validity period of a public transport
ticket (90min) and the average displacement (60min).
As a side node, we have excluded from our analysis the
users with extremely high entropy (H <= 0.9). The
rationale lies in the fact that a purely uniform behavior
is a typical trait of M2M (machine-to-machine) com-
munications, such as IoT (Internet of Things) devices,
which shall not be considered for mobility.

Clearly, the tuning of these values strictly depends
on the use case and on the required level of granular-
ity. In case of studies tackling long-distance trajectories
(e.g., highways at Nation-scale), the thresholds can be
regulated in a less strict fashion, as a coarser position
sampling rate would not negatively impact the results.
We reckon that this work still lacks general guidelines
for the tuning of the entropy, which probably is the
less intuitive indicator. We leave this, together with an
entropy-based classifier for IoT devices useful for mo-
bility (e.g., vehicle black-boxes), as future work.

In our studies, we selected HAUs focusing on the city
of Barcelona, Spain. However, reporting these sample
results supports the validity of CDR data for this type
of investigations. Two examples are illustrated in Fig. 5.
Fig. 5(a) shows a map of clusters where Barcelona vis-
itors concentrate their activities. The clustering has
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been achieved applying Dbscan (Density-Based Spatial
Clustering of Applications with Noise) algorithm [18],
using as items the cells weighted by visitor number. The
top-clusters (corresponding to touristic attractions or
important way points such as stations) are highlighted
with colors (less important clusters are in black). Gray
cells correspond to noise, i.e., cells flagged as no part
of any cluster because of the smaller visitor density.
Fig. 5(b) contains a chord diagram showing the transi-
tions between pairs of districts. In both cases it is im-
portant to base the analysis on HAU samples, in order
to reduce the mobility bias. Note that a high-frequency
position sampling is important for observing also static
behaviors.

Concluding, the two HAU sets are sufficiently large
to support the inference of relevant mobility statistics
(e.g., density, trajectories, sojourn times). Additionally,
we have verified the statistical relevance of the sam-
ples by comparing demographic information (i.e., age,
gender, etc.) with the entire customer population, to
ensure the absence of bias.

6. CONCLUSIONS AND FUTURE WORK
We have studied two large CDR datasets collected

over a period of two years. For the sake of characteriz-
ing the quality of the mobility information they provide,
we proposed a set of indicators aimed at quantifying the
amount and the uniformity over time of action tickets.
The datasets highly differ in terms of position sampling
rate and therefore achievable quality of movement ob-
servations. Indeed, our investigation revealed that the
user habits have drastically changed over time, making
newer datasets a finer-grained source of mobility data
compared to the past. We foresee that this trend of
improvements will continue in the future, while studies
and products based on CDRs are gaining relevance.

As for future work, we plan to continue our longi-
tudinal study by characterizing additional datasets col-
lected over 2017. We expect to observe further improve-
ments impacting all our quality indicators. Finally, we
are interested in characterizing roamers: CDRs for this
user class are an interesting mean to infer the mobility
of international visitors (which would provide valuable
insights for studies targeting tourism). Roamers, how-
ever, do not currently follow the same activity patterns
of common users and therefore require further assess-
ments (at least until the forthcoming European regu-
lations for roaming charges are enforced, which is ex-
pected to happen in 2017).
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