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We present a methodology to address the problem of human gesture segmentation and recognition in
video and depth image sequences. A Bag-of-Visual-and-Depth-Words (BoVDW) model is introduced as
an extension of the Bag-of-Visual-Words (BoVW) model. State-of-the-art RGB and depth features, includ-
ing a newly proposed depth descriptor, are analysed and combined in a late fusion form. The method is
integrated in a Human Gesture Recognition pipeline, together with a novel probability-based Dynamic
Time Warping (PDTW) algorithm which is used to perform prior segmentation of idle gestures. The pro-
posed DTW variant uses samples of the same gesture category to build a Gaussian Mixture Model driven
probabilistic model of that gesture class. Results of the whole Human Gesture Recognition pipeline in a
public data set show better performance in comparison to both standard BoVW model and DTW
approach.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, Human Gesture Recognition is one of the most chal-
lenging tasks in computer vision. Current methodologies have
shown preliminary results on very simple scenarios, but they are
still far from human performance. Due to the large number of po-
tential applications involving Human Gesture Recognition in fields
like surveillance (Hampapur et al., 2005), sign language recogni-
tion (Starner and Pentland, 1995), or clinical assistance (Pentland,
2005) among others, there is a large and active research commu-
nity devoted to deal with this problem. Independently of the appli-
cation field, the usual Human Gesture Recognition pipeline is
mainly formed by two steps: gesture representation and gesture
classification.

Regarding the gesture representation step, literature shows a
variety of methods that have obtained successful results. Com-
monly applied in image retrieval or image classification scenarios,
Bag-of-Visual-Words (BoVW) is one of the most used approaches.
This methodology is an evolution of Bag-of-Words (BoW) (Lewis,
1998) representation, used in document analysis, where each
document is represented using the frequency of appearance of
each word in a dictionary. In the image domain, these words be-
come visual elements of a certain visual vocabulary. First, each im-
age is decomposed into a large set of patches, either using some
type of spatial sampling (grids, sliding window, etc.) or detecting
points with relevant properties (corners, salient regions, etc.). Each
patch is then described obtaining a numeric descriptor. A set of V
representative visual words are selected by means of a clustering
process over the descriptors. Once the visual vocabulary is defined,
each new image can be represented by a global histogram contain-
ing the frequencies of visual words. Finally, this histogram can be
used as input for any classification technique (i.e. k-Nearest Neigh-
bor or SVM) (Csurka et al., 2004; Mirza-Mohammadi et al., 2009).
In addition, extensions of BoW from still images to image se-
quences have been recently proposed in the context of human ac-
tion recognition, defining Spatio-Temporal-Visual-Words (STVW)
(Niebles et al., 2008).

The release of the Microsoft KinectTM sensor in late 2010 has al-
lowed an easy and inexpensive access to almost synchronized
range imaging with standard video data. Those data combine both
sources into what is commonly named RGB-D images (RGB plus
Depth). This data fusion has reduced the burden of the first steps
in many pipelines devoted to image or object segmentation, and
opened new questions such as how these data can be effectively
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described and fused. Motivated by the information provided by
depth maps, several 3-D descriptors have been recently developed
(Bogdan et al., 2009; Rusu et al., 2010) (most of them based on cod-
ifying the distribution of normal vectors among regions in the 3D
space), as well as their fusion with RGB data (Lai et al., 2011) and
learning approaches for object recognition (Bo et al., 2011). This
depth information has been particularly exploited for gesture rec-
ognition and human body segmentation and tracking. While some
works focus on just the hand regions for performing gesture recog-
nition (Wan et al., 2012; Li, 2012; Pedersoli et al., 2012; Biswas and
Basu, 2011; Doliotis et al., 2011; Keskin et al., 2013), in Shotton
et al. (2011) introduced one of the greatest advances in the extrac-
tion of the human body pose using RGB-D, which is provided as
part of the KinectTM human recognition framework. The method
is based on inferring pixel label probabilities through Random For-
est from learned offsets of depth features. Then, mean shift is ap-
plied to estimate human joints and representing the body in
skeletal form. Hernández-Vela et al. (2012) extended Shotton’s
work applying Graph-cuts to the pixel label probabilities obtained
through Random Forest, in order to compute consistent segmenta-
tions in the spatio-temporal domain. Girshick et al. (2011) pro-
posed later a different approach in which they directly regress
the positions of the body joints, without the need of an intermedi-
ate pixel-wise body limb classification as in Shotton et al. (2011).
The extraction of body pose information opens the door to one of
the most challenging problems nowadays, i.e. Human Gesture
Recognition.

In the gesture classification step there exists a wide number of
methods based on dynamic programming algorithms for both
alignment and clustering of temporal series (Zhou et al., 2012).
Other probabilistic methods such as Hidden Markov Models
(HMM) or Conditional Random Fields (CRF) have been commonly
used in the literature (Starner and Pentland, 1995). Nevertheless,
one of the most common methods for Human Gesture Recognition
is Dynamic Time Warping (DTW) (Reyes et al., 2011), since it offers
a simple yet effective temporal alignment between sequences of
different lengths. However, the application of such methods to ges-
ture detection in complex scenarios becomes a hard task due to the
high variability of the environmental conditions among different
domains. Some common problems are: wide range of human pose
configurations, influence of background, continuity of human
movements, spontaneity of human actions, speed, appearance of
unexpected objects, illumination changes, partial occlusions, or
different points of view, just to mention a few. These effects can
cause dramatic changes in the description of a certain gesture, gen-
erating a great intra-class variability. In this sense, since usual
DTW is applied between a sequence and a single pattern, it fails
when taking into account such variability.

The problem of gesture recognition in which an idle or refer-
ence gesture is performed between gestures is addressed in this
paper. In order to solve this problem, we introduce a continuous
Human Gesture Recognition pipeline based on: First, a new feature
representation by means of a Bag-of-Visual-and-Depth-Words
(BoVDW) approach that takes profit of multi-modal RGB-D data
to tackle the gesture representation step. The BoVDW is empow-
ered by the combination of both RGB images and a new depth
descriptor which takes into account the distribution of normal vec-
tors with respect to the camera position, as well as the rotation
with respect to the roll axis of the camera. Next, we propose the
definition of an extension of DTW method to a probability-based
framework in order to perform temporal gesture segmentation.
In order to evaluate the presented approach, we compare the per-
formances achieved with state-of-the-art RGB and depth feature
1 http://gesture.chalearn.org/
descriptors separately, and combine them in a late fusion form.
All these experiments are performed in the proposed framework
using the public data set provided by the ChaLearn Gesture Chal-
lenge.1 Results of the proposed BoVDW method show better perfor-
mance using late fusion in comparison to early fusion and standard
BoVW model. Moreover, our BoVDW approach outperforms the
baseline methodology provided by the ChaLearn Gesture Recogni-
tion Challenge 2012. In the same way, the results obtained with
the proposed PDTW outperform the ones from the classical DTW
approach.

The BoVDW model for gesture recognition is introduced in Sec-
tion 2, as well as the PDTW. Experimental results and their analysis
are presented in Section 3. Finally, Section 4 concludes the paper.
2. BoVDW and probability-based DTW for Human Gesture
Recognition

As pointed out in the Introduction, we address the problem of
gesture recognition, with the constraint that an idle or reference
gesture is performed between gestures. The main reason for such
constraint is that in many real-world settings there always exists
an idle gesture between movements rather than a continuous flux
of gestures. Some examples are sports like tennis, swordplay, box-
ing, martial arts, or choreographic sports. However, the existence
of an idle gesture is not only related to sports, some other daily
tasks like cooking or dancing contain idle gestures in certain situ-
ations. Moreover, the proposed system can be extended to be ap-
plied to other gesture recognition domains without the need of
modeling idle gestures, but any other kind of gesture categories.

In this sense, our approach consists of two steps: a temporal ges-
ture segmentation step (the detection of the idle gesture), and the
gesture classification step. The former one aims to provide a tempo-
ral segmentation of gestures. To perform such temporal segmenta-
tion, a novel probabalistic-based DTW models the variability of the
idle gesture by learning a GMM on the features of the idle gesture
category. Once the gestures have been segmented, the latter step is
gesture classification. Segmented gestures are represented and
classified by means of a BoVDW method, which integrates in a late
fusion form the information of both RGB and depth images.

The global pipeline of the approach is depicted in Fig. 1. The
proposal is divided in two blocks, the temporal gesture segmenta-
tion step and the gesture classification step, which are detailed in
next sections.

2.1. Gesture segmentation: probability-based DTW

The original DTW is introduced in this section, as well as its
common extension to detect a certain sequence given an indefinite
data stream. In the following subsections, DTW is extended in
Fig. 1. General pipeline of the proposed approach.

http://gesture.chalearn.org/


Fig. 2. Flowchart of the probabilistic DTW gesture segmentation methodology.

2 HOG/HOF descriptors in our particular case, see Section 3.2.1 for further details.
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order to align patterns taking into account the probability density
function (PDF) of each element of the sequence by means of a
Gaussian Mixture Model (GMM). A flowchart of the whole method-
ology is shown in Fig. 2.

2.1.1. Dynamic Time Warping
The original DTW algorithm was defined to match temporal dis-

tortions between two models, finding an alignment/warping path
between two time series: an input model Q ¼ fq1; . . . ; qng and a
certain sequence C ¼ fc1; . . . ; cmg. In our particular case, the time
series Q and C are video sequences, where each qj and ci will be fea-
ture vectors describing the jth and ith frame respectively. In this
sense, Q will be an input video sequence and C will be the gesture
we are aiming to detect. Generally, in order to align these two se-
quences, a Mm�n matrix is designed, where position ði; jÞ of the ma-
trix contains the alignment cost between ci and qj. Then, a warping
path of length s is defined as a set of contiguous matrix elements,
defining a mapping between C and Q : W ¼ fw1; . . . ;wsg, where wi

indexes a position in the cost matrix M. This warping path is typ-
ically subject to several constraints,

Boundary conditions: w1 ¼ ð1;1Þ and ws ¼ ðm;nÞ.
Continuity and monotonicity: Given ws0�1 ¼ ða0; b0Þ, ws0 ¼ ða; bÞ,

then a� a0 6 1 and b� b0 6 1. This condition forces the points in
the cost matrix with the warping path W to be monotonically
spaced in time.

Interest is focused on the final warping path that, satisfying
these conditions, minimizes the warping cost,

DTWðMÞ ¼min
W

MðwsÞ
s

� �
; ð1Þ

where s compensates the different lengths of the warping paths at
each time t. This path can be found very efficiently using dynamic
programming. The cost at a certain position Mði; jÞ can be found
as the composition of the Euclidean distance dði; jÞ between the fea-
ture vectors ci and qj of the two time series, and the minimum cost
of the adjacent elements of the cost matrix up to that position, as,

Mði; jÞ ¼ dði; jÞ þminfMði� 1; j� 1Þ;Mði� 1; jÞ;Mði; j� 1Þg: ð2Þ

However, given the streaming nature of our problem, the input
video sequence Q has no definite length (it may be an infinite video
sequence) and may contain several occurrences of the gesture se-
quence C. In this sense, the system considers that there is correspon-
dence between the current block k in Q and the gesture when the
following condition is satisfied, Mðm; kÞ < h; k 2 ½1; . . . ;1� for a
given cost threshold h. At this point, if Mðm; kÞ < h k is consider a
possible end of a gesture sequence C.

Once detected a possible end of the gesture sequence, the warp-
ing path W can be found through backtracking the minimum cost
path from Mðm; kÞ to Mð0; gÞ, being g the instant of time in Q where
the detected gesture begins. Note that dði; jÞ is the cost function
which measures the difference among descriptors ci and qj, which
in standard DTW is defined as the euclidean distance between ci

and qj. An example of a begin-end gesture recognition together
with the warping path estimation is shown in Fig. 2 (last 2 steps:
GMM learning and probabilistic DTW).

2.1.2. Handling variance with probability-based DTW
Consider a training set of N sequences, S ¼ fS1;S2; . . . ; SNg, that

is, N gesture samples belonging to the same gesture category. Then,
each sequence Sg ¼ fsg

1; . . . ; sg
Lg
g, (each gesture sample) is composed

by a feature vector 2 for each frame t, denoted as sg
t , where Lg is the

length in frames of sequence Sg . In order to avoid temporal deforma-
tions of the gesture samples in S, all sequences are aligned with the
median length sequence using the classical DTW with Euclidean dis-
tance. Let us assume that sequences are ordered according to their
length, so that Lg�1 6 Lg 6 Lgþ1;8g 2 ½2; . . . ;N � 1�, then, the median
length sequence is S ¼ SdN2e.

It is worth noting that this alignment step by using DTW has no
relation to the actual gesture recognition, as it is consider a pre-
processing step to obtain a set of gesture samples with few tempo-
ral deformations and a matching length.

Finally, after this alignment process, all sequences have length
LdN2e. The set of warped sequences is defined as eS ¼ feS1; eS2; . . . ; eSNg
(See Fig. 3(b)). Once all samples are aligned, the N feature vectors
corresponding to each sequence element at a certain frame t, de-
noted as eF t ¼ ff 1

t ; f
2
t ; . . . ; f N

t g, are modeled by means of a G�compo-
nent Gaussian Mixture Model (GMM)
kt ¼ fat

k;lt
k;R

t
kg; k ¼ 1; . . . ;G, where at

k is the mixing value, and
lt

k and Rt
k are the parameters of each of the G Gaussian models

in the mixture. As a result, each one of the GMMs that model eacheF t is defined as follows,

pðeF tÞ ¼
XG

k¼1

at
k � e�

1
2ðx�lt

k
ÞT �ðRt

kÞ
�1 �ðx�lt

k
Þ: ð3Þ



(a) (b)

(c) (d)
Fig. 3. (a) Different sequences of a certain gesture category and the median length sequence. (b) Alignment of all sequences with the median length sequence by means of
Euclidean DTW. (c) Warped sequences set eS from which each set of tth elements among all sequences are modeled. (d) Gaussian Mixture Model learning with 3 components.
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The resulting model is composed by the set of GMMs that mod-
el each set eF t among all warped sequences of a certain gesture
class. An example of the process is shown in Fig. 3.

2.1.3. Distance measures
In the classical DTW, a pattern and a sequence are aligned using

a distance metric, such as the Euclidean distance. However, since
our gesture samples are modeled by means of probabilistic models,
in order to use the principles of DTW, the distance must be rede-
fined. In this sense, a soft-distance based on the probability of a
point x belonging to each one of the G components in the GMM
is consider, i.e. the posterior probability of x is obtained according
to Eq. (3). Therefore, since

PG
k¼1at

k¼1, the probability of a element
qj 2 Q belonging to the whole GMM kt can be computed as,

Pðqj; ktÞ ¼
XG

k¼1

at
k � PðqjÞk; ð4Þ

PðqjÞk ¼ e�
1
2ðqj�lt

k
ÞT �ðRt

kÞ
�1 �ðqj�lt

k
Þ; ð5Þ

which is the sum of the weighted probability of each component.
Nevertheless, an additional step is required since the standard
DTW algorithm is conceived for distances instead of similarity mea-
sures. In this sense, a soft-distance based measure of the probability
is used, which is defined as,

Dðqj; ktÞ ¼ exp�Pðqj ;ktÞ: ð6Þ

In conclusion, possible temporal deformations of different sam-
ples of the same gesture category are taken into account by align-
ing the set of N gesture samples with the median length sequence.
In addition, by modeling with a GMM each set of feature vectors
which compose the resulting warped sequences, we obtain a meth-
odology for gesture detection that is able to deal with multiple
deformations in gestures both temporal (which are modeled by
the DTW alignment), or descriptive (which are learned by the
GMM modeling). The algorithm that summarizes the use of the
probability-based DTW to detect start-end of gesture categories
is shown in Table 1. Fig. 6 illustrates the application of the algo-
rithm in a toy problem.

2.2. Gesture Representation: BoVDW

In this section, the BoVDW approach for Human Gesture Repre-
sentation is introduced. Fig. 4 contains a conceptual scheme of the
approach. In this figure, it is shown that the information from RGB
and depth images is merged, while circles representing the spatio-
temporal interest points are described by means of the proposed
novel VFHCRH descriptor.

2.2.1. Keypoint detection
The first step of BoW-based models consists of selecting a set of

points in the image/video with relevant properties. In order to re-
duce the amount of points in a dense spatio-temporal sampling,
the Spatio-Temporal Interest Point (STIP) detector (Laptev, 2005)
is used, which is an extension of the well-known Harris detector
in the temporal dimension. The STIP detector firstly computes
the second-moment 3 � 3 matrix g of first order spatial and tem-
poral derivatives. Finally, the detector searches regions in the im-
age with significant eigenvalues k1; k2; k3 of g, combining the
determinant and the trace of g,



Table 1
Probability-based DTW algorithm.

Input: A set of GMM models k ¼ fk1; . . . ; kmg corresponding to a gesture
category, a threshold value l, and the streaming sequence Q ¼ fq1;...;q1g.
Cost matrix Mm�1 is defined, where NðxÞ; x ¼ ði; tÞ is the set of three
upper-left neighbor locations of x in M.

Output: Warping path W of the detected gesture, if any.
// Initialization
for i ¼ 1 : m do

for j ¼ 1 :1 do
Mði; jÞ ¼ 1

end
end
for j ¼ 1 :1 do

Mð0; jÞ ¼ 0
end
for j ¼ 0 :1 do

for i ¼ 1 : m do
x ¼ ði; jÞ
MðxÞ ¼ Dðqj; kiÞ þminx02NðxÞMðx0Þ

end
if Mðm; jÞ < l then

W ¼ argmin
x02NðxÞ

Mðx0Þ
( )

return
end

end
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Fig. 4. BoVDW approach in a Human Gesture Recognition scenario. Interest points
in RGB and depth images are depicted as circles. Circles indicate the assignment to a
visual word in the shown histogram – computed over one spatio-temporal bin.
Limits of the bins from the spatio-temporal pyramids decomposition are repre-
sented by dashed lines in blue and green, respectively. A detailed view of the
normals of the depth image is shown in the upper-left corner. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
H ¼ jgj � K � TrðgÞ3; ð7Þ

where j � j corresponds to the determinant, Trð:Þ computes the trace,
and K stands for a relative importance constant factor. As multi-
modal RGB-D data is employed, the STIP detector is applied sepa-
rately on the RGB and depth volumes, so two sets of interest points
SRGB and SD are obtained.

2.2.2. Keypoint description
In this step, the interest points detected in the previous step

should be described. On one hand, state-of-the-art RGB descriptors
are computed for SRGB, including Histogram of Gradients (HOG)
(Dalal and Triggs, 2005), Histogram of Optical Flow (HOF), and
their concatenation HOG/HOF (Laptev et al., 2008). On the other
hand, a new descriptor VFHCRH (Viewpoint Feature Histogram
Camera Roll Histogram) is introduced for SD, as detailed below.

2.2.3. VFHCRH
The recently proposed Point Feature Histogram (PFH) and Fast

Point Feature Histogram (FPFH) descriptors (Bogdan et al., 2009)
represent each instance in the 3-D cloud of points with a histogram
encoding the distribution of the mean curvature around it. Both
PFH and FPFH provide P6 DOF (Degrees of Freedom) pose invariant
histograms, being P the number of points in the cloud. Following
their principles, Viewpoint Feature Histogram (VFH) (Rusu et al.,
2010) describes each cloud of points with one descriptor of 308
bins, variant to object rotation around pitch and yaw axis. How-
ever, VFH is invariant to rotation about the roll axis of the camera.
In contrast, Clustered Viewpoint Feature Histogram (CVFH) (Ald-
oma et al., 2011) describes each cloud of points using a different
number of descriptors r, where r is the number of stable regions
found on the cloud. Each stable region is described using a non-
normalized VFH histogram and a Camera’s Roll Histogram (CRH),
and the final object description includes all region descriptors.
CRH is computed by projecting the normal of the point cloud sðiÞ
of the ith point qðiÞ onto a plane Pxy that is orthogonal to the view-
ing axis z, the vector between the camera center and the centroid
of the cloud, under orthographic projection,

sðiÞxy ¼ jjsðiÞjj � sinð/Þ; ð8Þ

where / is the angle between the normal sðiÞ and the viewing axis.
Finally, the histogram encodes the frequencies of the projected an-
gle w between sðiÞxy and y-axis, the vertical vector of the camera plane
(see Fig. 5(a)).

In order to avoid descriptors of arbitrary lengths for different
point clouds, the whole cloud is described using VFH. In addition,
a 92 bins CRH is computed for encoding 6DOF information. The
concatenation of both histograms results in the proposed VFHCRH
descriptor of 400 bins shown in Fig. 5(b). Note how the first 308
bins of the concatenated feature vector correspond to the VFH, that
encode the normals of the point cloud. Finally, the remaining bins
corresponding to the CRH descriptor, encode the information of the
relative orientation of the point cloud to the camera.

2.2.4. BoVDW histogram
Once all the detected points have been described, the vocabu-

lary of V visual/depth words is designed by applying a clustering
method over all the descriptors. Hence, the clustering method –
k-means in our case – defines the words from which a query video
sequence will be represented, shaped like a histogram h that
counts the occurrences of each word. Additionally, in order to
introduce geometrical and temporal information, spatio-temporal
pyramids are applied. Basically, spatio-temporal pyramids consist
of dividing the video volume in bu; bv , and bp bins along the
u; v , and p dimensions of the volume, respectively. Then,
bu � bv � bp separate histograms are computed with the points ly-
ing in each one of these bins, and they are concatenated jointly
with the general histogram computed using all points.

These histograms define the model for a certain class of the
problem – in our case, a certain gesture. Since multi-modal data
is considered, different vocabularies are defined for the RGB-based
descriptors and the depth-based ones, and the corresponding his-
tograms, hRGB and hD, are obtained. Finally, the information given
by the different modalities is merged in the next and final classifi-
cation step, hence using late fusion.

2.2.5. BoVDW-based classification
The final step of the BoVDW approach consists of predicting the

class of the query video. For that, any kind of multi-class



Fig. 5. (a) Point cloud of a face and the projection of its normal vectors onto the plane Pxy , orthogonal to the viewing axis z. (b) VFHCRH descriptor: Concatenation of VFH and
CRH histograms resulting in 400 total bins.

Fig. 6. Examples of idle gesture detection on the Chalearn data set using the probability-based DTW approach. The line below each pair of depth and RGB images represents
the detection of a idle gesture (step up: beginning of idle gesture, step down: end).
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Table 2
Overlapping and accuracy results. Bold values respresent the best results obtained
among the different methodologies (row-wise).

Overlap. Acc.

Probability-based DTW 0.3908 � 0.0211 0.6781 � 0.0239
Euclidean DTW 0.3003 � 0.0302 0.6043 � 0.0321
HMM 0.2851 � 0.0432 0.5328 � 0.0519

Table 3
Mean Levenshtein distance for RGB and depth descriptors. Bold values respresent the
best results obtained among the different RGB and Depth descriptors (row-wise).

RGB desc. MLD Depth desc. MLD

HOG 0.3452 VFH 0.4021
HOF 0.4144 VFHCRH 0.3064
HOGHOF 0.3314

Table 4
Mean Levenshtein Distance of the best RGB and depth descriptors separately, as well
as the 2-fold and 3-fold late fusion of them. Results obtained by the baseline from the
ChaLearn challenge are also shown. Rows 1 to 20 represent the different batches. Bold
values respresent the best results obtained among the different methodologies
(column-wise).

HOGHOF VFHCRH 2-fold L.F. 3-fold L.F. Baseline

1 0.19 0.17 0.12 0.20 0.42
2 0.24 0.30 0.24 0.26 0.57
3 0.76 0.39 0.40 0.49 0.78
4 0.14 0.08 0.08 0.11 0.32
5 0.08 0.33 0.17 0.17 0.25
6 0.41 0.47 0.44 0.34 0.54
7 0.10 0.18 0.11 0.13 0.64
8 0.12 0.26 0.14 0.08 0.40
9 0.11 0.18 0.15 0.13 0.30
10 0.57 0.40 0.39 0.46 0.79
11 0.47 0.36 0.27 0.34 0.54
12 0.37 0.20 0.21 0.17 0.42
13 0.16 0.14 0.10 0.09 0.34
14 0.41 0.34 0.30 0.30 0.69
15 0.38 0.28 0.34 0.28 0.54
16 0.22 0.41 0.34 0.29 0.42
17 0.38 0.16 0.15 0.17 0.55
18 0.38 0.43 0.40 0.38 0.53
19 0.67 0.50 0.50 0.44 0.61
20 0.46 0.57 0.56 0.48 0.52
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supervised learning technique could be used. In our case, a simple
k-Nearest Neighbour classification is used, computing the comple-
mentary of the histogram intersection as a distance,

dF ¼ 1�
X

i

minðhF
modelðiÞ;h

F
queryðiÞÞ; ð9Þ

where F 2 fRGB;Dg. Finally, in order to merge the histograms hRGB

and hD, the distances dRGB and dD are computed separately, as well
as the weighted sum,

dhist ¼ ð1� bÞdRGB þ bdD
; ð10Þ

to perform late fusion, where b is a weighting factor.

3. Experiments and results

To better understand the experiments, firstly the data, methods,
and evaluation measurements are discussed.

3.1. Data

Data source used is the ChaLearn (Chalearn gesture dataset,
2011) data set, provided by the CVPR2011 Workshop’s challenge
on Human Gesture Recognition. The data set consists of 50,000
gestures each one portraying a single user in front of a fixed cam-
era. The images are captured by the Kinect device providing both
RGB and depth images. A subset of the whole data set has been
considered, formed by 20 development batches with a manually
tagged gesture segmentation, which is used to obtain the idle ges-
tures. Each batch includes 100 recorded gestures grouped in se-
quences of 1 to 5 gestures performed by the same user. The
gestures from each batch are drawn from a different lexicon of 8
to 15 unique gestures and just one training sample per gesture is
provided. These lexicons are categorized in nine classes, including:
(1) body language gestures (scratching your head, crossing your
arms, etc.), (2) gesticulations performed to accompany speech,
(3) illustrators (like Italian gestures), (4) emblems (like Indian Mu-
dras), (5) signs (from sign languages for the deaf), (6) signals (div-
ing signals, mashalling signals to guide machinery or vehicle, etc.),
(7) actions (like drinking or writing), (8) pantomimes (gestures
made to mimic actions), and (9) dance postures.

For each sequence, the actor performs an idle gesture between
each gesture to classify. These idle gestures are used to provide
the temporal segmentation (further details are shown in the next
section). For this data set, background subtraction was performed
based on depth maps, and a 10�10 grid approach was defined to
extract HOG+HOF feature descriptors per cell, which are finally
concatenated in a full image (posture) descriptor. Using this data
set, the recognition of the idle gesture pattern will be tested,
using 100 samples of the pattern in a ten-fold validation
procedure.

3.2. Methods and evaluation

The experiments are presented in two different sections. The
first section considers the temporal segmentation experiment
while the second section aims the gesture classification
experiments.

3.2.1. Temporal segmentation experiments
In order to provide with quantitative measures of the temporal

segmentation procedure, we first describe the subset of the data
used and the feature extraction.
� Data and Feature extraction
For the temporal segmentation experiments we used the 20

development batches provided by the organization of the
challenge. These batches contain a manual labeling of gesture start
and end points. Each batch includes 100 recorded gestures,
grouped in sequences of 1 to 5 gestures performed by the same
user. For each sequence the actor performs an idle gesture between
each gesture of the gestures drawn from lexicons. Finally, this
means that we have a set of approximately 1800 idle gestures.

Each video sequence of each batch was described using a
20� 20 grid approach. For each patch in the grid we obtain a
208 feature vector consisting of HOG (128 dimensions) and HOF
(80 dimensions) descriptors which are finally concatenated in a full
image (posture descriptor). Due to the huge dimensionality of the
descriptor of a single frame (83200 dimensions), we utilized a Ran-
dom Projection to reduce dimensionality to 150 dimensions.
� Experimental Settings
For both of the DTW approaches the cost-threshold value h is

estimated in advance using ten-fold cross-validation strategy on
the set of 1800 idle gesture samples. This involves using 180 idle
gestures as the validation data, and the remaining observations
as the training data. This is repeated such that each observation
in the sample is used once as the validation data. Finally, the
threshold value h chosen is the one associated with the largest
overlapping performance. For the probabilistic DTW approach,
each GMM was fit with 4 components. The value of G was obtained
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using a ten-fold cross-validation procedure on the set of 1800 idle
gestures as well. In this sense, the cross-validation procedure for
the probability-based DTW is a double loop (optimizing on the
number of GMM components G, and then, on the cost-threshold
h). In the HMM case, we used the Baum-Welch algorithm for train-
ing, and 3 states were experimentally set for the idle gesture, using
a vocabulary of 60 symbols computed using K-means over the
training data features. Final recognition is performed with tempo-
ral sliding windows of different wide sizes, based on the idle ges-
ture samples length variability.
� Methods, Measurements and Results
Our probability-based DTW approach using the proposed dis-

tance D shown in Eq. (6) is compared to the usual DTW algorithm
and the Hidden Markov Model approach. The evaluation measure-
ments presented are overlapping and accuracy of the recognition for
the idle gesture, considering that a gesture is correctly detected if
overlapping in the idle gesture sub-sequence is greater than 60%
Fig. 7. Confusion matrices for gesture recognition
(the standard overlapping value, computed as the intersection over
the union between the temporal bounds in the ground truth, and
the ones computed by our method). The accuracy is computed
frame-wise as
Acc¼ TruePositivesþTrueNegatives
TruePositivesþTrueNegativesþFalsePositivesþFalseNegatives

:

ð11Þ

The results of our proposal, HMM and the classical DTW algo-
rithm are shown in Table 2. It can be seen how the proposed prob-
ability-based DTW outperforms the usual DTW and HMM
algorithms in both experiments. Moreover, confidence intervals
of DTW and HMM do not intersect with the probability-based
DTW in any case. From this results it can be concluded that per-
forming dynamic programming increases the generalization capa-
bility of the HMM approach, as well as a model defined by a set of
in each one of the 20 development batches.
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GMMs outperforms the classical DTW on RGB-Depth data without
increasing the computational complexity of the method. Fig. 6
shows qualitative results from two sample video sequences.
3.2.2. BoVDW classification experiments
In all the experiments shown in this section, the vocabulary size

was set to N ¼ 200 words for both RGB and depth cases. For the
spatio-temporal pyramids, the volume was divided in 2� 2� 2
bins (resulting in a final histogram of 1800 bins). Since the nature
of our application problem is one-shot learning (only one training
sample is available for each class), a simple Nearest Neighbor clas-
sification is employed. Finally, for the late fusion, the weight
b ¼ 0:8 was empirically set, by testing the performance of our
method in a small subset of development batches from the dataset.
We observed that when increasing b, starting from b ¼ 0, the per-
formance keeps increasing in a linear fashion, until the value
b ¼ 0:45. From b ¼ 0:45 to b ¼ 0:8 the performance keeps improv-
ing more slightly, and finally, from b ¼ 0:8 to b ¼ 1 the perfor-
mance drops again.

For the evaluation of the methods, in the context of Human Ges-
ture Recognition, the Levenshtein distance or edit distance was
considered. This edit distance between two strings is defined as
the minimum number of operations (insertions, substitutions or
deletions) needed to transform one string into the other. In our
case, strings contain gesture labels detected in a video sequence.
For all the comparison, the mean Levenshtein distance (MLD)
was computed over all sequences and batches.

Table 3 shows a comparison between different state-of-the-art
RGB and depth descriptors (including our proposed VFHCRH),
using our BoVDW approach. Moreover, we compare our BoVDW
framework with the baseline methodology provided by the Cha-
Learn 2012 Gesture Recognition challenge. This baseline first com-
putes differences of contiguous frames, which encode movement
information. After that, these difference images are divided into
cells forming a grid, each one containing the sum of movement
information among it. These 2D grids are then transformed then
into vectors, one for each difference image. Moreover, the model
for a gesture is computed via Principal Component Analysis
(PCA), using all the vectors belonging to that gesture. The eigenvec-
tors are just computed and stored, so when a new sequence arrives,
its movement signature first is computed, and then projected and
reconstructed using the different PCA models from each gesture.
Finally, the classification is performed by choosing the gesture
class with lower reconstruction error. This baseline obtains a
MLD of 0:5096. Table 4 shows the results in all the 20 development
batches separately.

When using our BoVDW approach, in the case of RGB descrip-
tors, HOF alone performs the worst. In contrast, the early concate-
nation of HOF to HOG descriptor outperforms the simple HOG.
Thus, HOF contributes adding discriminative information to HOG.
In a similar way, looking at the depth descriptors, it can be seen
how the concatenation of the CRH to the VFH descriptor clearly im-
proves the performance compared to the simpler VFH. When using
late fusion in order to merge information from the best RGB and
depth descriptors (HOGHOF and VFHCRH, respectively), a value
of 0.2714 for MLD is achieved. Fig. 7 shows the confusion matrices
of the gesture recognition results with this late fusion configura-
tion. In general, the confusion matrices follow an almost diagonal
shape, indicating that the majority of the gestures are well classi-
fied. However, the results of batches 3, 16, 18, 19 are significantly
worse, possibly due to the static characteristics of the gestures in
these batches. Furthermore, late fusion was also applied in a 3-fold
way, merging HOG, HOF, and VFHCRH descriptors separately. In
this case the weight b was assigned to HOG and VFHCRH descrip-
tors (and 1� b to HOF), improving the MLD to 0.2662. From this
result it can be concluded that HOGHOF late fusion performs better
than HOGHOF early fusion.

4. Conclusion

In this paper, the BoVDW approach for Human Gesture Recog-
nition has been presented using multi-modal RGB-D images. A
new depth descriptor VFHCRH has been proposed, which outper-
forms VFH. Moreover, the effect of the late fusion has been ana-
lysed for the combination of RGB and depth descriptors in the
BoVDW, obtaining better performance in comparison to early fu-
sion. In addition, a probabilistic-based DTW has been proposed
to asses the temporal segmentation of gestures, where different
samples of the same gesture category are used to build a Gauss-
ian-based probabilistic model of the gesture in which possible
deformations are implicitly encoded. In addition, to embed these
models into the DTW framework, a soft-distance based on the pos-
terior probability of the GMM was defined. In conclusion, a novel
methodology for gesture detection has been presented, which is
able to deal with multiple deformations in data.
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